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Analysis of a lottery competition model with limited
nutrient availability
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How a plant species utilizes a limited nutrient is important for its survival. The purpose of this work
is to examine how nutrient utilization mechanisms (for seed production) affect the coexistence of
competing plant species. We construct a revised lottery model that uses one of three possible kinds of
nutrient utilization functions. In all cases the models suggest that two species can coexist under certain
circumstances, but that three species cannot coexist, at least when the nutrient utilization functions
are continuous functions of nutrient uptake. However, in the discontinuous case three species can
coexist in a state of sustained oscillations. The results suggest that one need pay close attention to the
differences in the nutrient utilization mechanisms among competing plant species in order to ascertain
the competitive outcome.
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1. Introduction

One of the important issues in ecology is to understand how a variety of species coexist [1].
In this paper, we restrict ourselves to plant species and consider the relationship between
species coexistence and nutrient utilization mechanisms for the production of seeds. Plant
species utilize inorganic material from soil for seed production. This is because of their need
for kinds of nutrients that cannot be generated by photosynthesis [2]. After a nutrient is taken
up, a plant species must decide how to utilize it for seed production. The decision is a critical
one for seeds, since their germination depends on the amount of nutrient received. Therefore,
the amount of nutrient allotted to the production of seeds by the adult plant is critical for the
survival of the seeds.
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For a lottery model, let us denote the fraction of the sites occupied by adults of species i

as Pi . The time unit is one year and the immature period is shorter than a year. There are n

plant species in a single habitat. We assume each plant produces seed each year. Additionally,
every year adult plants are removed at some rate, and these removals create vacant space
that we assume is immediately occupied by individuals randomly chosen from the seed
pool. The standard lottery model [3, 4] is given by the following non-autonomous difference
equation

Pi(t + 1) = (1 − δi(t))Pi(t) + S(P1(t), . . . , Pn(t))
βi(t)Pi(t)∑n

j=1 βj (t)Pj (t)
, i = 1, . . . , n,

where t denotes a nonnegative integer. δi = δi(t) is the mortality rate of adult individu-
als of species i, so 0 ≤ δi ≤ 1, and the vacant space created by the mortality of adults is
S(P1, . . . , Pn) = 1 −∑n

j=1(1 − δj (t))Pj . βi = βi(t) > 0 is the per capita rate of seed pro-
duction by adults of species i and the total amount of seeds produced by species i is βi(t)Pi(t).
The initial condition satisfies Pi(0) > 0, i = 1, . . . , n and

∑n
j=1 Pj (0) = 1. Note that every

solution satisfies
∑n

j=1 Pj (t) = 1 for all t = 1, 2, . . . .

We find that the first term of the right-hand side of the standard lottery model above gives
the fraction of sites at time t that are occupied by surviving adults at t + 1. The second term
gives the fraction of sites occupied by new adults. This fraction is the fraction of vacant sites
created by mortality in that year and the amount of the seeds produced during the year. Note
that the successful settlement of each plant i depends on the fraction βiPi/

∑n
j=1 βjPj of new

plant.
In the above model, it is implicitly assumed that nutrients are always sufficiently available

for all plant species. The studies of Chesson and Warner [3] and Chesson [2] show that the
temporal fluctuation of the natality ratesβi(t)promotes coexistence of species, but the temporal
fluctuation of the mortality rates δi(t) does not. Furthermore, coexistence cannot be achieved
for almost every pair of the parameters βi and δi as long as they are constant. Additionally, in
the above model with the constant parameters, the unique survival species can be determined
by the ratio βi/δi . Only plant k with the largest βk/δk (k = 1, . . . , n) will survive.

The effects of temporal fluctuations in the recruitment process have been extensively
analyzed for lottery models (e.g. see [5, 6]). Lottery models also provide a basis for under-
standing the coexistence of multiple species in terrestrial systems [7]. Additionally, Dewi and
Chesson [8] studied a lottery model with a stage structure and Comins and Noble [9] studied
the model with heterogeneous patches. The recent works of Muko and Iwasa [10, 11] con-
sidered another mechanism that promotes coexistence in the standard lottery model, namely,
spatial heterogeneity. Their model includes multiple habitats, each of which has different
mortality and natality rates of the species. Their study shows that the spatial heterogeneity
of mortality rates promotes coexistence of species, but that spatial heterogeneity of natality
rates does not [10]. From these two studies, we see that the spatial heterogeneity can promote
coexistence in a lottery model. Although many researchers have studied lottery models that
include a spatial factor, we know of no studies that include the dynamics and effect of limited
nutrient availability.

In this study, we revise the basic lottery model by including the dynamics of a nutrient
of limited availability utilized by competing plant species and its effect on coexistence. The
organization of this paper is as follows. First, we modify the original lottery model to take
into account effects due to the limited availability of a nutrient. Then we propose several types
of reproduction functions for the revised model. Finally, we consider the effect of limited
availability of nutrients on the plant diversity.
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2. Model with limited nutrient

Our model is the following autonomous difference equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi(t + 1) = (1 − δi)Pi(t) + S(P1(t), . . . , Pn(t))Ri(P1(t), . . . , Pn(t), x(t))

i = 1, . . . , n,

x(t + 1) = (x(t) −
n∑

j=1

αj (x(t))Pj (t))q + s,

(1)

where x is the amount of limited nutrient contained in a unit area of the habi-
tat, S(P1, . . . , Pn) = 1 −∑n

j=1(1 − δj )Pj and Ri(P1, . . . , Pn, x) = βi(αi(x))Pi/
∑n

j=1 βj

(αj (x))Pj . The parameters δi (0 ≤ δi ≤ 1) and the variables Pi have the same meanings
as the original lottery model. Let us first consider the second equation in (1). The function
αi(x) is the amount of nutrient consumed by an individual of plant species i and is defined by

αi(x) = mix

ai + x
, (2)

where mi (mi > 0) is the maximum of the nutrient absorbed by plant species i, and ai (ai > 0)

is the Michaelis–Menten (or half-saturation) constant. Since plant species can uptake nutri-
ent only from the soil and x(t) −∑n

j=1 αj (x(t))Pj (t) > 0 must hold for t > 0, we assume
that mi/ai ≤ 1. The parameter s (s > 0) denotes a constant inflow of nutrient and 1 − q

(0 < q < 1) denotes its washout rate.
βi denotes the number of potentially viable seeds produced by an adult individual of

species i. Thus βi can be expressed by the product of the number of seeds produced by
species i and the germination rate of seeds. In this paper, we assume that the germination rate
is a function of the amount of nutrient consumed by adult individuals since this amount seems
to reflect the amount of nutrient stored in each seed. In general, βi(αi) satisfies the following:

• βi(0) = 0 and βi(αi) > 0 for all αi > 0,
• βi(αi) is a non-decreasing function.

We consider three types of functions βi . For the first type, seeds can germinate under any
small amount of nutrient. For simplicity we assume that βi is proportional to αi (Type I). For
the second type, seeds are able to germinate only if the amount of nutrient consumed by a
plant is more than a certain threshold li . The germination rate for the nutrient less than the
threshold value is equal to zero and the rate above the threshold increases linearly with the
nutrient amount consumed minus the threshold nutrient value (Type II). For the third type,
seeds are able to germinate when the amount of nutrient is more than some threshold and the
germination rate above the threshold is proportional to the nutrient αi (Type III). Seeds may
reserve nutrient until it becomes sufficient in quantity for the germination. This phenomenon
may be regarded as a kind of storage effect.

Note that we implicitly assume the distribution of nutrient to seeds is proportional to nutrient
uptake. Therefore, the nutrient content of seed depends on the amount of nutrient consumed
by adults (see also the interpretation of βi mentioned above). The relationship between the
germination rate and nutrient content is reported by Ujiie et al. [12]. Consistent with their
findings (see figures 6–8 in [12]), the relationship between the nutrient consumed by adults
and the germination viability of seeds is reasonably described by βi of Type II or Type III.
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Note that Type I is obtained from Type II for li = 0. We consider Type I function to analyze the
qualitative differences on dynamical behaviors between the models with Type I and Type II.

Type I

βi(αi) = ciαi,

Type II

βi(αi) =
{

ci(αi − li) (li ≤ αi)

0 (0 < αi < li),

Type III

βi(αi) =
{

ciαi (li ≤ αi)

0 (0 < αi < li).

Graphs of all types appear in figure 1. Here ci > 0 is composed of two factors: the conversion
rate from nutrient consumed by adults to seeds and the constant fraction of nutrient consumed
by adults that is distributed to seeds. li > 0 is a positive constant expressing the nutrient thresh-
old. For Type II and Type III, βi(αi) = 0 for 0 < αi < li . This corresponds to the situation
where, although adult individuals reproduce seeds, there is not enough nutrient for seeds to
germinate.

Let us consider system (1). We define � := {(P1, . . . , Pn, x) ∈ Rn+1 | P1 ≥ 0, . . . , Pn ≥
0,
∑n

j=1 Pj = 1, x > 0}. We first show that � is forward invariant.

LEMMA 1 If (P1(0), . . . , Pn(0), x(0)) ∈ �, then (P1(t), . . . , Pn(t), x(t)) ∈ � for all t ≥ 0.

Proof Let (P1(t), . . . , Pn(t), x(t)) ∈ �. Then it follows from (1) that
∑n

j=1 Pj (t + 1) = 1.
Since βi(αi(x)) and S(P1, P2, . . . , Pn) are nonnegative, Pi(t + 1) ≥ 0 holds for all i =
1, 2, . . . , n. Finally, we prove that x(t + 1) > 0. In fact, by using maxx≥0(mi/(ai + x)) =

Figure 1. The graph of reproduction function of seeds (βi ) with respect to absorbed nutrient αi(x). (a), (b) and (c)
correspond to Type I, Type II and Type III, respectively.
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mi/ai , we have the following inequalities:

x(t + 1) = (x(t) −
n∑

j=1

αj (x(t))Pj (t))q + s

≥ (x(t) −
n∑

j=1

mj

aj

x(t)Pj (t))q + s

≥ x(t)(1 −
n∑

j=1

Pj (t))q + s

= s.

Here we used mi/ai ≤ 1 for i = 1, . . . , n. This completes the proof. �

LEMMA 2 Every solution of system (1) with the initial condition (P1(0), . . . , Pn(0), x(0)) ∈
� is bounded.

Proof From Lemma 1, if (P1(0), . . . , Pn(0), x(0)) ∈ �, then (P1(t), . . . , Pn(t), x(t)) ∈
� for all t ≥ 0. So, it is sufficient only to show that x(t) is bounded above. If
(P1(t), . . . , Pn(t), x(t)) ∈ �, then (x(t) −∑n

j=1 αj (x(t))Pj (t))q + s ≤ qx(t) + s holds.
Therefore, we have

x(t + 1) ≤ qx(t) + s.

If we reduce both sides of the inequality by s/(1 − q), we obtain

x(t + 1) − s

1 − q
≤ qx(t) + s − s

1 − q

= q

(
x(t) − s

1 − q

)

≤ qt+1

(
x(0) − s

1 − q

)
.

This implies the boundedness of x(t). Note that 0 < q < 1. This completes the proof. �

These lemmas imply that the occupation rate Pi always satisfies 0 ≤ Pi ≤ 1 and the amount
of nutrient is always positive and bounded. These lemmas are reasonable in nature, that is,
the fraction of occupation by species i is naturally positive and less than 1. Furthermore, the
amount of nutrient x is always positive. Note that there is never any vacant space because∑n

j=1 Pj (t) = 1. This is qualitatively different from the model without nutrient dynamics and
only density dependence.

Additionally, we find the following lemma about an interior equilibrium.

LEMMA 3 If (1) has a positive equilibrium (P ∗
1 , . . . , P ∗

n , x∗), then the following conditions
hold:

βi(αi(x
∗))

δi

= βj (αj (x
∗))

δj

, 1 ≤ i �= j ≤ n. (3)

Lemma 3 shows that at most two species can coexist in general under the influence of
nourishment and three or more species cannot coexist at the positive equilibrium in general.
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This is because condition (3) cannot be satisfied in general for n > 3. We consider the case
with two or three species (i.e. n = 2 or n = 3) in section 3. For the three-species case, we
give only the simulation results. Hereafter we always assume that species 1 belongs to Type I.
Note that this assumption ensures that

∑n
j=1 βj (αj (x))Pj �= 0 on � whenever P1 �= 0. That

is, the total amount of seeds cannot be zero.

3. The stability analysis for the revised lottery model

3.1 System with Type I species

First we consider the case n = 2 with both species of Type I. In this case, system (1) reduces
to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(t + 1) = (1 − δ1)P1(t) +
⎧⎨
⎩1 −

2∑
j=1

(1 − δj )Pj (t)

⎫⎬
⎭ β1(α1(x(t)))P1(t)∑2

j=1 βj (αj (x))Pj (t)

P2(t + 1) = (1 − δ2)P2(t) +
⎧⎨
⎩1 −

2∑
j=1

(1 − δj )Pj (t)

⎫⎬
⎭ β2(α2(x(t)))P2(t)∑2

j=1 βj (αj (x(t)))Pj (t)

x(t + 1) = (x(t) −
2∑

j=1

αj (x(t))Pj (t))q + s,

(4)

where βi(αi(x)) = ciαi(x), i = 1, 2. Hereafter we assume � = c2m2δ1/(c1m1δ2) > 1
without loss of generality.

There are three types of equilibria in system (4) as follows:

1. boundary equilibrium: EI
1 (1, 0, x̂I

1 ), x̂I
1 > 0,

2. boundary equilibrium: EI
2 (0, 1, x̂I

2 ), x̂I
2 > 0,

3. interior equilibrium: EI+(P I
1+, P I

2+, xI+), P I
1+ > 0, P I

2+ > 0, xI+ > 0,

where x̂I
i , P I

1+, P I
2+, xI+ are given by

x̂I
i = s − (1 − q)ai − miq +√

(s − (1 − q)ai − miq)2 + 4sai(1 − q)

2(1 − q)

P I
1+ = α2(x

I+)q − (s − (1 − q)xI+)

(α2(x
I+) − α1(x

I+))q
, P I

2+ = (s − (1 − q)xI+) − α1(x
I+)q

(α2(x
I+) − α1(x

I+))q
, xI

+ = a2 − a1�

� − 1
.

Table 1 summarizes the feasibility and local asymptotic stability conditions of the equilibria.
We straightforwardly obtain conditions for the feasibility of the interior equilibrium from the
formulas above. The conditions that ensure xI+ > 0 are given by a2/a1 > � > 1. Further-
more, the conditions that ensure P I

i+ > 0 for both i are α1(x
I+)q ≷ s − (1 − q)xI+≷ α2(x

I+)q

(where the upper inequalities are to be taken together and the lower inequalities are to be taken
together). From the definitions of the equilibrium points, these inequalities are equivalent to
the inequalities x̂I

2 ≷ xI+ ≷ x̂I
1 , as the following lemma shows.

LEMMA 4 Suppose that xI+ > 0. Then the following relationship holds:

α1(x
I
+)q ≷ s − (1 − q)xI

+ ≷ α2(x
I
+)q ⇐⇒ x̂I

2 ≷ xI
+ ≷ x̂I

1 .
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Table 1. The feasibility and stability conditions of equilibria
for system (4).

Equilibrium Feasibility Stability
point conditions conditions

EI
1 always x̂I

1 < xI+
EI

2 always x̂I
2 > xI+

EI+ a2/a1 > � > 1 x̂I
1 > xI+ > x̂I

2

x̂I
1 ≷ xI+ ≷ x̂I

2

Proof We will prove α1(x
I+)q > s − (1 − q)xI+ > α2(x

I+)q ⇐⇒ x̂I
2 > xI+ > x̂I

1 . The
remaining case can be proved similarly.

(=⇒) Suppose that α1(x
I+)q > s − (1 − q)xI+ > α2(x

I+)q is true. Then, from the definition
of x̂I

1 , we have following inequalities:

s − (1 − q)x̂I
1 − α1(x̂

I
1 )q = 0 > s − (1 − q)xI

+ − α1(x
I
+)q.

xI
+ > x̂I

1 .

Note that the function f (x) = s − (1 − q)x − αi(x)q is decreasing with respect to x.
Similarly we have xI+ < x̂I

2 . The proof of the sufficiency is completed.
(⇐=) Suppose that x̂I

2 > xI+ > x̂I
1 . A similar argument to that the sufficiency condition

establishes the desired inequality α1(x
I+)q > s − (1 − q)xI+ > α2(x

I+)q. �

Lemma 4 provides the feasibility condition given in table 1 for the equilibrium EI+. We also
find in table 1 that there exists a bistable state where both EI

1 and EI
2 are stable (x̂I

1 < xI+ < x̂I
2 ).

It turns out that if the system is bistable, then equilibrium EI+ is positive and unstable while,

Figure 2. The (δ2, m2) plane for system (1) with two Type I species. (a) In AREA B, we have the bistable state
and the interior equilibrium is unstable. AREA M gives the mutually invasible state and the interior equilibrium is
stable. (b) This graph shows the dynamical property of (1) during t = 9 × 103 − 10 × 103. In AREA I (resp. AREA
II), only species 1 (resp. species 2) survives. In AREA III, two species coexist at an interior equilibrium point. In
AREA IV, the survival species depend on the initial values of the species (P1(0), P2(0), x(0)). The parameters are
m2 ∈ [0, 4] and δ2 ∈ [0, 0.5], δ1 = 0.12, m1 = 0.6, a1 = 1, a2 = 4.7, l1 = l2 = 0, q = 0.8, s = 1, c1 = c2 = 2.0.
The initial condition for (b) is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9).
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on the other hand, if the system is mutually invasible (both EI
1 and EI

2 are unstable) then
EI+ is stable. We summarize these results in the following theorems, whose proofs appear in
Appendix B.

THEOREM 1 If system (4) is bistable, then an interior equilibrium is unstable.

THEOREM 2 If system (4) is mutually invasible, then an interior equilibrium is stable.

We show some simulation results for two species with Type I seed production functions
(figures 2 and 3). From these simulations, we can confirm that two species coexist when the
system is mutually invasible. This result is also illustrated for three species in figure 4.

Figure 3. The temporal sequence of P1, P2 and x for system (1) with two Type I species. (a-1) and (a-2): The para-
meters in AREA B in figure 2(a) are chosen and only species 1 or 2 survives depending on initial condi-
tions (bistable state). (b) The parameter in AREA M in figure 2(a) is chosen and two species coexist
(invasible state). The parameters are the same as figure 2 except for (a-1) m2 = 0.44, δ2 = 0.05,
(P1(0), P2(0), x(0)) = (0.9, 0.1, 0.9), (a-2) m2 = 0.44, δ2 = 0.05, (P1(0), P2(0), x(0)) = (0.1, 0.9, 0.9),
(b)m2 = 3, δ2 = 0.3, (P1(0), P2(0), x(0)) = (0.2, 0.6, 3).
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Figure 4. The (δ3, m3) plane for system (1) with three Type I species. In AREA I, species 1 and 2 coexist. In
AREA II, only species 3 survives. The parameters are m3 ∈ [0, 2.5], δ1 = 0.12, δ2 = 0.3, δ3 ∈ [0, 0.2], m1 = 0.6,
m2 = 3, a1 = 1, a2 = 4.7, a3 = 5 l1 = l2 = l3 = 0, q = 0.8, s = 1, c1 = c2 = c3 = 2.0. The initial condition is
(P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9).

3.2 System with Type II species

We will consider system (1) with Type II for species 2 and keep the species 1 belonging to
Type I. Further we assume that δ2 �= 0. Similar to the model considered in section 3.1 there
are three types of equilibria for system (4):

1. boundary equilibrium: EII
1 (1, 0, x̂II

1 ), x̂II
1 > 0;

2. boundary equilibrium: EII
2 (0, 1, x̂II

2 ), x̂II
2 > 0;

3. interior equilibrium: EII± (P II
1±, P II

2±, xII± ), P II
1± > 0, P II

2± > 0, xII± > 0;

where x̂II
i , P II

1±, P II
2±, xII± are given by

x̂II
i = s − (1 − q)ai − miq +√

(s − (1 − q)ai − miq)2 + 4sai(1 − q)

2(1 − q)

P II
1± = α2(x

II± )q − (s − (1 − q)xII± )

(α2(x
II± ) − α1(x

II± ))q
, P II

2± = (s − (1 − q)xII± ) − α1(x
II± )q

(α2(x
II± ) − α1(x

II± ))q
,

xII
± = −A ±√

A2 + 4b2a1a2(� − 1 − b2)

2(� − 1 − b2)
,

where � = c2m2δ1/(c1m1δ2) > 1, b2 = �l2/m2, A = a1� − a2 − b2(a1 + a2). Note that
xII+ = xII− = xI+ when l2 = 0. The feasibility and stability conditions are summarized in
table 2.

If l2 = 0 holds, the first feasibility condition (i) of an interior equilibrium given in table 2
is reduced to the one given in table 1. Note that under � > 1 and l2 = 0, xII± > 0 implies
−(a1� − a2) ± |a1� − a2| > 0. This inequality holds if and only if a1� − a2 < 0. Hence we
have a2/a1 > � > 1. Note that condition (ii) is impossible when l2 = 0, since we assumed
� > 1.
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Table 2. The feasibility and stability conditions for (1) with Type II. Here B± = a1 − ((a1 + a2)x
II± + 2a1a2)

l2/x
II± m2, b2 = �l2/m2, H(x) = (� − 1 − b2)x

2 + Ax − b2a1a2.

Equilibrium point Feasibility conditions Stability conditions

EII
1 (m2 − l2)x̂

II
1 > a2l2 H(x̂II

1 ) < 0

(m2 − l2)x̂
II
1 ≤ a2l2 always

EII
2 (m2 − l2)x̂

II
2 > a2l2 H(x̂II

2 ) > 0

EII
b± (i) � > 1 + b2, (m2 − l2)x

II+ > a2l2 α2(x
II± ) − α1(x

II± ) ≷ 0

x̂I I
1 ≷ xII+ ≷ x̂I I

2 B±� − a2 ≶ 0

or
c1α1(x

II± )

δ1c2α2(x
II± )

> 1 >
δ1α2(x

II± )

α2(x
II± ) − l2

(ii) � < 1 + b2, (m2 − l2)x
II± > a2l2

A2 + 4
l2�

m2
a1a2

(
� − �

l2

m2
− 1

)
> 0

A > 0, x̂I I
1 ≷ xII± ≷ x̂I I

2

(m2 − l2)x
II+ ≤ a2l2 unstable

Note from Lemma 3 that xII+ is a positive solution of

H(x) = (� − 1 − b2)x
2 + Ax − b2a1a2 = 0

satisfying α2(x) > l2. It is easy to check that such a solution exists if (i) � > 1 + b2, H(x̄) < 0,
where x̄ is a solution to α2(x̄) = l2 (i.e. x̄ = a2l2/(m2 − l2)). Also two solutions xII± exist if
(ii) � < 1 + b2, A > 0, A2 + 4(� − 1 − b2)b2a1a2 > 0, H(x̄) < 0, x̄ < A/2(1 + b2 − �).

To ensure that P II
i± > 0 (i = 1, 2), we need

x̂II
1 ≶ xII

± ≶ x̂II
2

Figure 5. The (m2, l2) plane for system (1) with Type II plant 2 (n = 2). (a) The AREA M shows the itshape
mutually invasible state. Furthermore, an interior equilibrium exists and is stable there. (b) This graph shows the
dynamical property of (1) during t ∈ [19.9 × 103, 20 × 103]. In AREA I (resp. AREA II), only species 1 (resp.
species 2) survives. InAREA III, two species coexist without a sustained oscillation. The parameters are m2 ∈ [0, 4.8],
l2 ∈ [0, 2], δ1 = δ2 = 0.12, m1 = 0.6, a1 = 1, a2 = 4.7, l1 = 0, q = 0.8, s = 1, c1 = c2 = 2.0. The initial condition
for (b) is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9).
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Figure 6. The bifurcation diagram for system (1) with Type II species 2 (n = 2). This graph plots eventual points
with respect to m2 during t ∈ [19.9 × 103, 20 × 103] for the solution. The same parameters are taken as figure 5
except for l2 = 0.5. The initial condition is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9).

Figure 7. The temporal sequence of P1, P2 and x for system (1) with Type II plant 2 (n = 2). The initial condition
is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9). The parameter values are the same as figure 6 except for (a) m2 = 1.9,
(b) m2 = 2.9, (b) m2 = 4.8.
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Figure 8. The (m3, l3) parameter plane for system (1) with Type II plants 2 and 3 (n = 3). In AREA I species
1 and 2 coexist. In AREA II species 1 and 3 coexist. In AREA III, only species 3 survives. The parameters are
m3 ∈ [0, 5], l3 ∈ [0, 1.4], m1 = 0.6, m2 = 1.5, a1 = 1, a2 = 4.7, a3 = 5, l1 = 0, l2 = 0.7, δ1 = δ2 = δ3 = 0.12,
c1 = c2 = c3 = 2, q = 0.8, s = 1. The initial condition is (P1(0), P2(0), P3(0), x(0)) = (0.3, 0.4, 0.2, 0.9).

Figure 9. The temporal sequence of P1, P2, P3 and x for system (1) with Type II species 2 and 3 (n = 3). The
initial condition is (P1(0), P2(0), P3(0), x(0)) = (0.3, 0.4, 0.2, 0.9). The parameter values are the same as figure 8
except for (a) (m3, l3) = (1, 0.4) :AREA I, (b) (m3, l3) = (2.6, 0.4) :AREA II, (c) (m3, l3) = (3.5, 0.4) :AREA III.
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for both cases. This gives the feasibility condition of interior equilibria in table 2. The stability
conditions are shown in Appendix C.

Remark The stability conditions given in table 2 with l2 = 0 correspond to those of table 1.
The simulation results for n = 2 (β1 is Type I, β2 is Type II) are given in figures 5–7. The

simulation results for n = 3 (β1 is Type I, β2 and β3 are Type II) are given in figures 8 and 9.

3.3 System with Type III species

We consider system (1) with Type III for species 2. This system has the same property on
the stability as system (1) with Type I species, except for the feasibility conditions on the
equilibrium points EIII

1 (1, 0, x̂III
1 ), EIII

2 (0, 1, x̂III
2 ) and EIII+ (P III

1+ , P III
2+ , xIII+ ) (see table 3).

The simulation results for n = 2 (β1 is Type I, β2 is Type III) are given in figures 10–12 and
for n = 3 (β1 is Type I, β2 and β3 are Type III) are given in figures 14 and 15.

Table 3. The feasibility and stability conditions for (1) with Type III.

Equilibrium point Feasibility conditions Stability conditions

EIII
1 (m2 − l2)x̂

III
1 > a2l2 x̂I II

1 < xIII+
(m2 − l2)x̂

III
1 ≤ a2l2 always

EIII
2 (m2 − l2)x̂

III
2 > a2l2 x̂I II

2 > xIII+
EIII+ (m2 − l2)x

III+ > a2l2
a2
a1

> � > 1 x̂I II
1 > xIII+ > x̂III

2

x̂I II
1 ≷ xIII+ ≷ x̂I II

2
(m2 − l2)x

III+ ≤ a2l2 unstable

Figure 10. The (m2, l2) parameter plane for system (1) with Type III species 2 (n = 2). (a) The AREA M shows
the region where EIII+ exists and is unstable (α2(x̂

III
1 ) > l2). (b) In AREA I, only species 1 survives. In AREA II,

only species 2 survives. In AREA III, species 1 and 2 coexist with a sustained oscillation. The parameters are
m2 ∈ [0, 4.7], l2 ∈ [0, 2.0], δ1 = δ2 = 0.12, m1 = 0.6, a1 = 1, a2 = 4.7, l1 = 0, q = 0.8, s = 1, c1 = c2 = 2.0.
The initial condition for (b) is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9).
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Figure 11. The bifurcation diagram for system (1) with Type III species 2 (n = 2). This graph plots eventual points
with respect to m2 during t ∈ [19.9 × 103, 20 × 103] for the solution of system (1). The parameters are the same as
figure 10 except for l2 = 0.7. The initial condition is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9).

Figure 12. The temporal sequences of P1, P2 and x for system (1) with Type III species 2 (n = 2). The initial
condition is (P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9). The parameters are the same as figure 11 except for (a) m2 = 1,
(b) m2 = 2, (b) m2 = 3.
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Figure 13. The temporal sequence of D = ∑2
j=1 βj (αj (x))Pj − {1 −∑2

j=1(1 − δj )Pj } with initial condition
(P1(0), P2(0), x(0)) = (0.3, 0.1, 0.9) for system (1) with Type III species 2 (n = 2). The parameters are the same as
figure 12(b).

Figure 14. The (m3, l3) parameter plane for system (1) with Type III species 2 and 3 (n = 3). In AREA I, species
1 and 2 coexist with sustained oscillations. In AREA II, species 2 and 3 coexist with sustained oscillations. In
AREA III, only species 3 survives. In AREA IV, species 1 and 3 coexist with sustained oscillations. In AREA V, three
species coexist with sustained oscillations. The parameters are m3 ∈ [0, 5], l3 ∈ [0, 2], m1 = 0.6, m2 = 3, a1 = 1,
a2 = 4.7, a3 = 5, l1 = 0, l2 = 0.9, δ1 = δ2 = δ3 = 0.12, c1 = c2 = c3 = 2, q = 0.8, s = 1. The initial condition is
(P1(0), P2(0), P3(0), x(0)) = (0.3, 0.4, 0.2, 0.9).

4. Discussion

In this paper, we have investigated the effect of various types of functions βi describing the
utilization of nutrient for seed production by competing plant species. The differences among
these functions dramatically change the population dynamics and the conditions for the species
coexistence.

For all types of reproduction function βi considered in this paper (Types I–III), we find that
two species can coexist on a single limiting nutrient under certain conditions (see AREA III in



148 S. Iwata et al.

Figure 15. The temporal sequence of P1, P2, P3, and x for system (1) with Type III plants 2 and 3 (n = 3). The
initial condition is (P1(0), P2(0), P3(0), x(0)) = (0.3, 0.4, 0.2, 0.9). (a)–(e) correspond to the AREA I–AREA V,
respectively. The parameters are the same as figure 14 except for (a) (m3, l3) = (1.0, 0.2), (b) (m3, l3) = (2.0, 0.2),
(c) (m3, l3) = (4.0, 0.2), (d) (m3, l3) = (4.0, 1.0), (e) (m3, l3) = (3.47, 1). The time interval is t ∈ [0, 500].

figures 2, 5 and 10). However, three or more species can not coexist at an interior equilibrium
in general (see Lemma 3 and figures 4, 8 and 14). Two important results are the following.

(i) For the two-species model with Type I functions βi , the parameter region of mutually
invasible is identical with the region of coexistence. The numerical simulations in figure 5
suggest that this property also holds with Type II functions βi . We find a large difference
between the region of equilibrium coexistence for models with Type I and II functions βi .
As an example, for fixed δ2 = 0.12 in figure 2(b) we see that it is only for m2 ≈ 1.1 that the
coexistence occurs for Type I functions βi , while, on the other hand, for Type II functions βi
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we find in figure 5(b) that various values of m2 ensure coexistence (for large l2). In general
the coexistence region for Type II function βi is wider than that for Type I.

(ii) A remarkable difference between the models Type III functions βi and those with Type I
or II is the possibility for two or three species coexistence by means of the periodic oscillations.
For models with Type I and Type II function βi , numerical simulations suggest that there are no
periodic solutions (see figures 2 and 5). Furthermore, three species cannot coexist in general
(see figures 4 and 8). On the other hand, under certain circumstances a periodic coexistence
solution can occur in the case of Type III functions βi , as illustrated in figure 12(b) for
the two-species case and figure 15(e) for the three-species case. The mechanism responsible
for periodic coexistence seems to be the oscillation of the nutrient x between two regions
l2 > α2(x) and l2 < α2(x). For example, in figure 12(b), where a2 = 4.7, m2 = 2 and l2 = 0.7
and the value of x satisfying α2(x) = l2 is x = 2.53077, we observe that x oscillates about
x = 2.53077 in figure 12(b). A proof of observation remaines an open mathematical problem.

In the lottery type models, it can happen under certain parameter conditions that seeds
occupy vacant space even when there is an insufficient amount of seeds. However, this problem
does not occur in this study since there are enough seeds to occupy any vacant space in the
event of coexistence (see figures 13 and 16, where the difference between

∑n
j=1 βj (αj (x))

and 1 −∑n
j=1(1 − δj )Pj is always positive. We checked this only by numerical simulations

and the problem remains to be unsolved mathematically).
It is well known that competitive exclusion holds for chemostat models, that is, only single

species can survive under a single resource. Huisman and Weissing [13] showed that nine
species can coexist under three kinds of resources in a state of sustained oscillations for the
chemostat model. Our results show that two species can coexist at a stable equilibrium point
under a single resource for a lottery model with limited nutrient availability. Further, three
species can coexist in a periodic oscillation even under a single resource for the model with
discontinuous nutrient utilization functions. Our conjecture is that four or more species can
coexist under a single resource when the species adopt the discontinuous functions. Our results
show that one needs to pay close attention to how plants utilize nutrients for seed production
in order to understand the outcome of competition for a limited nutrient.

Figure 16. The temporal sequence of D = ∑3
j=1 βj (αj (x))Pj − {1 −∑3

j=1(1 − δj )Pj } with initial condition
(P1(0), P2(0), P3(0), x(0)) = (0.3, 0.4, 0.2, 0.9) for system (1) with Type III plants 2 and 3 (n = 3). The parameters
are the same as figure 15(e). The time interval is t ∈ [0, 800].
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Appendix A: The Jacobian matrix of system (1)

Consider system (1). Define Fi and Fx as follows:

Fi = (1 − δi) +
⎧⎨
⎩1 −

n∑
j=1

(1 − δj )Pj

⎫⎬
⎭ βi(x)∑n

j=1 βj (x)Pj

=
⎧⎨
⎩βi(x) +

n∑
j=1

{
(1 − δi)βj (x) − (1 − δj )βi(x)

}
Pj

⎫⎬
⎭
⎛
⎝ n∑

j=1

βj (x)Pj

⎞
⎠

−1

i = 1, . . . , n,

Fx =
⎛
⎝x −

n∑
j=1

αj (x)Pj

⎞
⎠ q + s,

where βi(x) = βi(αi(x)) and we can rewrite (1) as Pi(t + 1) = FiPi , x(t + 1) = Fx . Now,
the derivative of FiPi with respect to Pk or x is given as follows:

∂FiPi

∂Pk

= Fi�ik + Pi

∂Fi

∂Pk

= Fi�ik − RiFk
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where Ri = βiPi/
∑n

j=1 βjPj . In fact, we can check Pi∂Fi/∂Pk = −RiFk:

Pi

∂Fi

∂Pk

= Pi

∂

∂Pk

⎧⎨
⎩1 −

n∑
j=1

(1 − δj )Pj

⎫⎬
⎭ βi(x)∑n

j=1 βj (x)Pj

= −βi(x)Pi

(1 − δk)
∑n

j=1 βj (x)Pj + (1 −∑n
j=1(1 − δj )Pj )βk(x)

(
∑n

j=1 βj (x)Pj )2

= − βi(x)Pi∑n
j=1 βj (x)Pj

βk(x) +∑n
j=1((1 − δk)βj (x) − (1 − δj )βk(x))Pj∑n

j=1 βj (x)Pj

= −RiFk.

Further,

∂FiPi

∂x
=
⎧⎨
⎩1 −

n∑
j=1

(1 − δj )Pj

⎫⎬
⎭ ∂

∂x

βi(x)Pi∑n
j=1 βj (x)Pj

=
⎧⎨
⎩1 −

n∑
j=1

(1 − δj )Pj

⎫⎬
⎭Pi

∑n
j=1

(
βj (x)

dβi (x)

dx
− dβj (x)

dx
βi(x)

)
Pj

(
∑n

j=1 βj (x)Pj )2

= 1 −∑n
j=1(1 − δj )Pj{∑n

j=1 βj (x)Pj

}2

n∑
j=1

(
βj (x)

dβi(x)

dx
− βi(x)

dβj (x)

dx

)
PiPj ,

∂Fx

∂Pk

= −αk(x)q,

∂Fx

∂x
=
⎛
⎝1 −

n∑
j=1

dαj (x)

dx
Pj

⎞
⎠ q.

As a result, the Jacobian matrix is given as follows:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(1 − R1) −R1F2 · · · −R1Fn

∂F1P1

∂x

−R2F1 F2(1 − R2) · · · −Rn−1Fn

∂F2P2

∂x
...

. . .
...

...

−RnF1 . . . −RnFn−1 Fn(1 − Rn)
∂FnPn

∂x

−α1(x)q −α2(x)q · · · −αn(x)q

⎛
⎝1 −

n∑
j=1

dαj (x)

dx
Pj

⎞
⎠ q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)
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Appendix B: Proofs of Theorems 1 and 2

We have a characteristic equation of system (4) at the interior equilibrium as

0 = |J − zI |

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − R1 − z −R1
∂F1P1

∂x

−R2 1 − R2 − z
∂F2P2

∂x

−α1(x)q −α2(x)q

⎛
⎝1 −

2∑
j=1

dαj (x)

dx
Pj

⎞
⎠ q − z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
P1=P I

1+,P2=P I
2+,x=xI+

. (6)

From
∑2

j=1(∂FjPj/∂x) = 0, (6) can be rewritten as

(1 − R1 − R2 − z)

∣∣∣∣∣∣∣∣∣∣

1 − z
∂F1P1

∂x

α2(x)q − α1(x)q

⎛
⎝1 −

2∑
j=1

∂αj (x)

∂x
Pj

⎞
⎠ q − z

∣∣∣∣∣∣∣∣∣∣
P1=P I

1+,P2=P I
2+,x=xI+

= 0.

Note that one eigenvalue is z = 1 − R1 − R2 = 0. From the Jury criteria, we know that the
absolute values of all eigenvalues of 2 × 2 matrix K are less than one, if the following
conditions hold:

1 + tr(K) + det(K) > 0,

1 − tr(K) + det(K) > 0,

det(K) < 1.

Define K as follows:

K =

⎛
⎜⎜⎜⎜⎝

1
∂F1P1

∂x

(α2(x) − α1(x))q

⎛
⎝1 −

2∑
j=1

dαj (x)

dx
Pj

⎞
⎠ q

⎞
⎟⎟⎟⎟⎠.

tr(K), det(K) at the equilibrium point EI+ are as follows:

tr(K)|P1=P I
1+,P2=P I

2+,x=xI+ = 1 +
⎛
⎝1 −

2∑
j=1

dαj (x
I+)

dx
P I

j+

⎞
⎠ q,

det(K)|P1=P I
1+,P2=P I

2+,x=xI+ =
⎛
⎝1 −

2∑
j=1

dαj (x
I+)

dx
P I

j+ − ∂F1P1

∂x
(α2(x

I
+) − α1(x

I
+))

⎞
⎠ q.
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Then, tr(K) is always positive. Note that 0 < dαj/dx < 1 because of mj ≤ aj . Hence
1 + tr(K) + det K > 0 if 1 − tr(K) + det(K) > 0. So, we need to consider the signs of
1 − tr(K) + det(K), det(K) − 1. First we consider 1 − tr(K) + det(K).

1 − tr(K) + det(K) = −∂F1P1

∂x
(α2(x

I
+) − α1(x

I
+))q

= −1 −∑2
j=1(1 − δj )P

I
j+{∑2

j=1 βj (x
I+)P I

j+
}2

(
β2(x

I
+)

dβ1(x
I+)

dx
− β1(x

I
+)

dβ2(x
I+)

dx

)

× P I
1+P I

2+(α2(x
I
+) − α1(x

I
+))q

= − P I
1+P I

2+∑2
j=1 βj (x

I+)P I
j+

(
δ2

dβ1(x
I+)

dx
− δ1

dβ2(x
I+)

dx

)

× (α2(x
I
+) − α1(x

I
+))q,

where we used
{
1 −∑2

j=1(1 − δj )P
I
j+
}
/
∑2

j=1 βj (αj (x
I+)) = δ1/β1(α1(x

I+)) = δ2/β2

(α2(x
I+)).

From the definition of xI+, we have,

δ2
∂β1(x)

∂x
− δ1

∂β2(x)

∂x
≶ 0 ⇐⇒ δ2

c1m1a1

(a1 + xI+)2
≶ δ1

c2m2a2

(a2 + xI+)2

⇐⇒ a1

(a1 + xI+)2
≶ �

a2

(a2 + xI+)2

⇐⇒ �2a1 ≶ �a2

⇐⇒ � ≶ a2

a1
, (7)

where � = c2δ1m2/c1δ2m1. Since an interior equilibrium point exists, we have
a2/a1 > � > 1. From them, 1 − tr(K) + det(K) > 0 holds if and only if α2(x

I+) − α1(x
I+) >

0. Note that α2(x
I+) − α1(x

I+) > 0 if x̂I
2 < xI+ < x̂I

1 from Lemma 4. Hence 1 − tr(K) +
det(K) > 0 if x̂I

2 < xI+ < x̂I
1 . Now we will check if det(K) < 1 under the condition α2(x

I+) −
α1(x

I+) > 0.

det(K) =
⎛
⎝1 −

2∑
j=1

∂αj (x
I+)

∂x
P I

j+ − dF1P1

dx
(α2(x

I
+) − α1(x

I
+))

⎞
⎠ q

=
⎛
⎝1 −

2∑
j=1

dαj (x
I+)

dx
P I

j+ − P I
1+P I

2+∑2
j=1 βj (x

I+)P I
j+

×
(

δ2
dβ1(x

I+)

dx
− δ1

dβ2(x
I+)

dx

)
(α2(x

I
+) − α1(x

I
+))

⎞
⎠ .
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From the definition of the interior equilibrium, we have (α2(x
I+) − α1(x

I+))P I
1+ = α2(x

I+) −
(s − (1 − q)xI+)/q and

det(K) =
⎡
⎣1 −

2∑
j=1

dαj (x
I+)

dx
P I

j+ − P I
1+P I

2+∑2
j=1 βj (x

I+)P I
j+

(
δ2

dβ1(x
I+)

dx
− δ1

dβ2(x
I+)

dx

)

× (α2(x
I
+) − α1(x

I
+))

⎤
⎦ q

=
⎡
⎣1 −

2∑
j=1

dαj (x
I+)

dx
P I

j+ − P I
1+P I

2+∑2
j=1 βj (x

I+)P I
j+

(
δ2c1

dα1(x
I+)

dx
− δ1c2

dα2(x
I+)

dx

)

× (α2(x
I
+) − α1(x

I
+))

⎤
⎦ q

=
[

1 − dα1(x
I+)

dx

{
P I

1+ + δ2c1(α2(x
I
+) − α1(x

I
+))

P I
1+P I

2+∑2
j=1 βj (x

I+)P I
j+

}

−dα2(x
I+)

dx

{
P I

2+ − δ1c2(α2(x
I
+) − α1(x

I
+))

P I
1+P I

2+∑2
j=1 βj (x

I+)P I
j+

}]
q

<

[
1 − dα1(x

I+)

dx
P I

1+ − dα2(x
I+)

dx
P I

2+

{
1 − δ1

c2α2(x
I+)∑2

j=1 βj (x
I+)P I

j+

}]
q. (8)

From (3), β1(x
I+) > δ2β1(x

I+) = δ1β2(x
I+) holds. Then,

2∑
j=1

βj (x
I
+)P I

j+ − δ1c2α2(x
I
+) =

2∑
j=1

βj (x
I
+)P I

j+ − δ1β2(x
I
+)

=
2∑

j=1

βj (x
I
+)P I

j+ − δ1β2(x
I
+)(P I

1+ + P I
2+)

= (β1(x
I
+) − δ1β2(x

I
+))P I

1+ + (1 − δ1)β2(x
I
+)P I

2+ > 0. (9)

Therefore, (8) and (9) imply that det(K) < 1. Consequently, we showed that if there exists an
interior equilibrium of system (4) and 1 < � < a2/a1 and α2(x

I+) > α1(x
I+) hold, it is stable.

This conclusion on an interior equilibrium can be applied for the system with Type III species
under the assumption that α2(x

III+ ) > l2.
From table 1, both the boundary equilibria EI1 and EI2 are stable (bistable state) if and

only if (� − 1)x̂I
1 < a2 − �a1 and (� − 1)x̂I

2 > a2 − �a1. From the definition of boundary
and interior equilibria, we have a bistable state if and only if α2(x

I+) − α1(x
I+) < 0 holds. In

fact, if we have a bistable state, then

(� − 1)x̂I
1 < a2 − �a1

x̂I
1 < xI

+
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s − (1 − q)xI
+ < s − (1 − q)x̂I

1 = m1x̂
I
1 q

a1 + x̂I
1

s − (1 − q)xI
+ <

m1x̂
I
1 q

a1 + x̂I
1

<
m1x

I+q

a1 + xI+
= α1(x

I
+)q.

Similarly, we find the following:

s − (1 − q)xI
+ >

m2x
I+q

a2 + xI+
= α2(x

I
+)q.

This shows that α2(x
I+) − α1(x

I+) < 0 and 1 − tr(K) + det(K) < 0 if we have a bistable case.
Hence, an interior equilibrium is unstable for bistable case.

Appendix C: The stability of interior fixed point of (1) with Type II

We need to check if 1 − tr(K) + det(K) > 0 and det(K) < 1, where K is given by

K =

⎛
⎜⎜⎜⎜⎝

1
∂F1P1

∂x

(α2(x) − α1(x))q

⎛
⎝1 −

2∑
j=1

dαj (x)

dx
Pj

⎞
⎠ q

⎞
⎟⎟⎟⎟⎠ .

1 − tr(K) + det(K) = −dF1P1

dx
(α2(x

II
+ ) − α1(x

II
+ ))q

= − P II
1+P II

2+∑2
j=1 βj (x

II+ )P II
j+

(
δ2

dβ1(x
II+ )

dx
− δ1

dβ2(x
II+ )

dx

)

× (α2(x
II
+ ) − α1(x

II
+ ))q.

From the definition of the interior equilibrium, we have

δ2β1(x
II
+ ) = δ1β2(x

II
+ )

δ2c1
m1x

II+
a1 + xII+

= δ1c2

(
m2x

II+
a2 + xII+

− l2

)

xII+
a1 + xII+

= �xII+
a2 + xII+

+ C,

where C = −�l2/m2.

δ2
dβ1(x

II+ )

dx
− δ1

dβ2(x
II+ )

dx
≶ 0 ⇐⇒ δ2

c1m1a1

(a1 + xII+ )2
≶ δ1

c2m2a2

(a2 + xII+ )2

⇐⇒ a1

(a1 + xII+ )2
≶ �

a2

(a2 + xII+ )2
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⇐⇒ a1

a1 + xII+

(
�

a2 + xII+
+ C

xII+

)

≶ a2

a2 + xII+

(
1

a1 + xII+
− C

xII+

)

⇐⇒ a1(�xII
+ + C(a2 + xII

+ )) ≶ a2(x
II
+ − C(a1 + xII

+ ))

⇐⇒ a1� − a2 ≶ −((a1 + a2)x
II
+ + 2a1a2)

C

xII+
. (10)

This gives the first two conditions in table 2 for the stability of EII+ . Similar to Appendix B,
det(K) satisfies

det(K) <

[
1 − dα1(x

II+ )

dx
P II

1+ − dα2(x
II+ )

dx
P II

2+

{
1 − δ1

c2α2(x
II+ )∑2

j=1 βj (x
II+ )P II

j+

}]
q.

Then,

2∑
j=1

βj (x
II
+ )P II

j+ − δ1c2α2(x
II
+ ) = {c1α1(x

II
+ ) − δ1c2α2(x

II
+ )}P II

1+

+ c2{α2(x
II
+ ) − l2 − δ1α2(x

II
+ )}P II

2+. (11)

From equation (11), det(K) < 1 if c1α1(x
II+ )/(δ1c2α2(x

II+ )) > 1 and δ1α2(x
II+ )/

(α2(x
II+ ) − l2) < 1, which gives the last condition in table 2.


