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In this short note, we consider attenuant cycles of population models. This study concerns the second conjecture of
Cushing and Henson [A periodically forced Beverton-Holt equation, J. Diff. Eq. Appl., 8 (2002), pp. 1119–1120],
which was recently resolved affirmatively by Elaydi and Sacker [Global stability of periodic orbits of nonautonomous
difference equations in population biology and the Cushing-Henson conjectures, Proc. 8th Inter. Conf. Diff. Eq.,
Brno, (in press)]. They showed that the periodic fluctuations in the carrying capacity always reduce the average of
population densities in the Beverton-Holt equation. We extend this result and give a class of population models in
which the periodic fluctuations in the carrying capacity always reduce the average of population densities.
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INTRODUCTION

The following non-autonomous difference equation is a population model with periodically

fluctuating carrying capacity:

xnþ1 ¼ g
xn

Kn

� �
xn; x0 [ Rþ U ½0;þ1Þ; n [ Zþ U {0; 1; 2; . . .}; ð1Þ

where g : Rþ ! Rþ is a continuous function which satisfies gð1Þ ¼ 1; gðxÞ . 1 for all

x [ ð0; 1Þ and gðxÞ , 1 for all x [ ð1;1Þ; and {Kn} is a periodic sequence such that Kn . 0

for all n [ Zþ and Knþk ¼ Kn for all n [ Zþ (not necessarily Knþi – Kn for

all i; 0 , i , k). The variable xn represents a population density at time n and the

time dependent parameter Kn is a carrying capacity at time n. By the assumptions of

the function g, we see that Kn is a unique positive fixed point of the map f nðxÞ U gðx=KnÞx:

The following (non-autonomous) Beverton-Holt equation is an example of (1):

xnþ1 ¼
lxn

1 þ ðl2 1Þðxn=KnÞ
; l . 1; Kn . 0; ð2Þ

where Kn fluctuates with period k.
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Cushing and Henson [1] showed that if k ¼ 2 and K1 – K2; then the cycle {p1, p2} of

Eq. (2) attracts all solutions with x0 . 0 and satisfies:

p1 þ p2

2
,

K1 þ K2

2
:

Cushing and Henson [2] also conjectured that even if k $ 3; the situation does not

change, i.e. (i) there exists a globally asymptotically stable cycle and (ii) its average is less

than the average of carrying capacities. These two conjectures, (i) and (ii), are of ecological

interest because they imply that the environmental fluctuation is deleterious to a population

in the sense that its time average of the population density in a fluctuating environment is

eventually less than that in a constant environment with the same average. The recent studies

of Elaydi and Sacker [3,4] resolved these two conjectures affirmatively. Furthermore, they

gave a class of periodic difference equations possessing a globally asymptotically stable

cycle, which concerns the first conjecture of Ref. [2]. In this short note, we extend the result

of Elaydi and Sacker [4] concerning the second conjecture of Ref. [2]. That is, we give a class

of population models in which cycles are attenuant.

ATTENUANT CYCLES

We consider the relationship between the time averages of a cycle {pn} and the carrying

capacities {Kn} of the non-autonomous difference equation (1). A cycle {pn} is said to be

positive if pn . 0 for all n $ 0: An m-cycle {pn} of Eq. (1) is said to be an attenuant if

�p , �K; where �p ¼ ðp1 þ p2 þ · · · þ pmÞ=m and �K ¼ ðK1 þ K2 þ · · · þ KkÞ=k:

Now we introduce two lemmas without proofs, and then obtain the main theorem

(Theorem 3) by using these lemmas (see Ref. [5] for the proofs of the lemmas).

Lemma 1 If g(z)z is concave on some interval ða; bÞ; 0 , a , b; then f ðx; yÞ U gðx=yÞx is

concave on the convex set {ðx; yÞ [ R2
þ : ay , x , by}:

Lemma 2 Let {pn} be a positive m-cycle of Eq. (1). Suppose that Ks – Ksþ1 for some

s [ {1; 2; . . .; k}: Then pi=Ki – pj=Kj for some i; j [ {1; 2; . . .;mk}:

Theorem 3 Let {pn} be a positive m-cycle of Eq. (1). Suppose that Ks – Ksþ1 for some

s [ {1; 2; . . .; k}: Assume that g(z)z is strictly concave on an interval ða; bÞ; 0 , a , b

containing all points pi=Ki [ ða; bÞ; i [ {1; 2; . . .;mk}: Then the cycle {pn} is attenuant.

Proof By Lemma 2, there exist i; j [ {1; 2; . . .;mk} such that pi=Ki – pj=Kj: Then, by the

strict concavity of g(z)z, we have the following:

g
ðpi=2Þ þ ðpj=2Þ

ðKi=2Þ þ ðKj=2Þ

� �
pi

2
þ

pj

2

� �
¼ g t

pi

Ki

þ ð1 2 tÞ
pj

Kj

� �
t

pi

Ki

þ ð1 2 tÞ
pj

Kj

� �
Ki þ Kj

2

. tg
pi

Ki

� �
pi

Ki

þ ð1 2 tÞg
pj

Kj

� �
pj

Kj

� �
Ki þ Kj

2

¼
1

2
g

pi

Ki

� �
pi þ

1

2
g

pj

Kj

� �
pj;
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where t ¼ Ki=ðKi þ KjÞ: Hence,

1

2
f ðpi;KiÞ þ

1

2
f ðpj;KjÞ , f

1

2
ðpi þ pjÞ;

1

2
ðKi þ KjÞ

� �
: ð3Þ

By Lemma 1, we see that f ðx; yÞ ¼ gðx=yÞx is concave on {ðx; yÞ [ R2
þ : ay , x , by}:

Since {pn} is a solution of System (1), the following equation holds for all n [ Zþ :

pnþ1 ¼ f ðpn;KnÞ:

Hence, by the concavity of f ðx; yÞ and Eq. (3), we have

1

mk

Xmk

n¼1

pnþ1 ¼
1

mk

Xmk

n–i; j
n¼1

f ðpn;KnÞ þ 2
1

2
f ðpi;KiÞ þ

1

2
f ðpj;KjÞ

� �8><
>:

9>=
>;

,
1

mk

Xmk

n–i; j
n¼1

f ð pn;KnÞ þ 2 f
1

2
ð pi þ pjÞ;

1

2
ðKi þ KjÞ

� �8><
>:

9>=
>;

# f
1

mk

Xmk

n¼1

pn;
1

mk

Xmk

n¼1

Kn

 !
:

Furthermore, since {pn} and {Kn} are periodic with periods m and k, respectively,

we have �p , f ð �p; �KÞ; where �p ¼
Pm

n¼1pn=m and �K ¼
Pk

n¼1Kn=k: Since f ðx; �KÞ ¼ gðx= �KÞx;

the assumptions of g implies that f ðx; �K Þ . x for all x [ ð0; �K Þ and f ðx; �K Þ , x for all

x [ ð �K;1Þ: Hence, we have �p , �K: A

By this theorem, we easily see that a cycle of the Beverton-Holt equation (2) is attenuant

since gðzÞz ¼ lz={1 þ ðl2 1Þz} is concave. Since the monotonicity of g(z)z is not assumed

in Theorem 3, it is also applicable to population models without monotone g(z)z (note that

g(z)z of Eq. (2) is monotone increasing). For example, the function g(z)z of the Ricker

equation is not monotone but concave on some interval. An example of application of

Theorem 3 to the Ricker equation is found in Ref. [5] (see Refs. [3–5] for the stability of the

attenuant cycles).
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