
Digital Object Identifier (DOI):
10.1007/s00285-003-0224-8

J. Math. Biol. 48, 57–81 (2004) Mathematical Biology

Ryusuke Kon

Permanence of discrete-time Kolmogorov systems
for two species and saturated fixed points

Received: 23 November 2002 / Revised version: 8 June 2003 /
Published online: 20 August 2003 – c© Springer-Verlag 2003

Abstract. This paper considers the dynamics of a discrete-time Kolmogorov system for
two-species populations. In particular, permanence of the system is considered. Permanence
is one of the concepts to describe the species’coexistence. By using the method of an average
Liapunov function, we have found a simple sufficient condition for permanence of the sys-
tem. That is, nonexistence of saturated boundary fixed points is enough for permanence of the
system under some appropriate convexity or concavity properties for the population growth
rate functions. Numerical investigations show that for the system with population growth
rate functions without such properties, the nonexistence of saturated boundary fixed points
is not sufficient for permanence, actually a boundary periodic orbit or a chaotic orbit can
be attractive despite the existence of a stable coexistence fixed point. This result implies, in
particular, that existence of a stable coexistence fixed point is not sufficient for permanence.

1. Introduction

In this paper, we consider population dynamics given by the following discrete
dynamical system:{

x1(t + 1) = x1(t)f1(x1(t), x2(t))

x2(t + 1) = x2(t)f2(x1(t), x2(t)), t ∈ Z+ = {0, 1, 2, . . . }, (1.1)

x1(0) ≥ 0 and x2(0) ≥ 0,

which is called a discrete-time Kolmogorov system. The system includes many
models for two-species population with non-overlapping generations. For exam-
ple, we can find several models of Kolmogorov type in Beddington et al. [2], Hutson
and Moran [11], Hofbauer et al. [7], Hadeler and Gerstmann [5], Franke andYakubu
[3], Neubert and Kot [20], Hassell [6], Kot [15], and Kon and Takeuchi [13]. The
models have been employed to consider several questions in population ecology.

One of the most important questions in population ecology is to find the coex-
istence conditions for the species. In order to consider this question, several math-
ematical concepts of coexistence of species are developed. Permanence is one of
such concepts (the definition of permanence is given in the next section). It can

R. Kon: Department of Systems Engineering, Faculty of Engineering, Shizuoka University,
Hamamatsu, 432-8561, Japan. e-mail: kon-r@math.club.ne.jp

Key words or phrases: Permanence – Average Liapunov functions – Kolmogorov systems –
Difference equations – Jensen’s inequality



58 R. Kon

evaluate possibility of coexistence of species even if the population densities of
the species fluctuate in a complicated manner (see Hofbauer et al. [7], Anderson
et al. [1], and Hofbauer and Sigmund [8]). Since discrete dynamical systems such
as (1.1) can exhibit very complex behavior (see Beddington et al. [2], Hadeler and
Gerstmann [5], and Neubert and Kot [20]), permanence is a very useful concept.

Permanence of systems of Kolmogorov type has been investigated in many
papers (for example, see Hutson and Moran [11], Hofbauer et al. [7], Lu and Wang
[16], and Kon and Takeuchi [13]). In these papers, some approaches are used to
obtain sufficient conditions for permanence of the systems. One of the methods
involves average Liapunov functions (see Hutson [9]). For example, this method
was applied to the following discrete-time Lotka-Volterra systems by Hofbauer
et al. [7]:

xi(t + 1) = xi(t)fi(x1(t), . . . , xn(t))

= xi(t) exp


ri +

n∑
j=1

aij xj (t)


 , i = 1, . . . , n. (1.2)

In this application, the averaging property on the convergence of the time average
of xi(t) toward the fixed point was efficiently used. This averaging property relies
on the linearity of ln fi . In this paper, we show that the replacement of the assump-
tion of linearity of ln fi by convexity or concavity of ln fi results in the average
densities being greater than or less than the equilibrium population densities. By
using this result, we apply the method of an average Liapunov function to a more
general system (1.1) than the Lotka-Volterra system (1.2) with n = 2.

It is known that stability of a boundary fixed point plays an important role for
permanence of a system in which a time average of the population density tends
to a fixed point in the case of Lotka-Volterra systems. If a system does not have
such a property for an average population density, not only stability of a boundary
periodic orbit but also stability of a boundary fixed point influences permanence of
the system. In such a case, we also have to focus on stability of boundary periodic
orbits to determine either the system is permanent. Since System (1.1) can have
an infinite number of boundary periodic orbits (for example, see May and Oster
[18]), a condition for permanence of (1.1) can be very difficult check. Therefore, it
is important to clarify the structure of the system whose permanence is determined
by stability of boundary fixed points. In this paper, by focusing on convexity and
concavity of population growth rate functions, we clarify such a structure and give
a simple condition for permanence of (1.1). Furthermore, by considering some par-
ticular population models, we discuss the importance of convexity and concavity
of population growth rate functions for permanence.

This paper is organized as follows. In Section 2, we introduce some notation
and definitions of permanence and a saturated fixed point. In Section 3, we obtain
a sufficient condition for permanence of System (1.1). This is the main result of the
paper. In Section 4, we apply the result given in Section 3 to systems with predator-
prey, competitive, and cooperative interspecific interactions, and obtain sufficient
conditions for their permanence. In Section 5, we introduce some particular popu-
lation models and apply the results given in Section 4 to these models. Moreover,
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by analyzing the models, we investigate the effect of convexity and concavity of
population growth rate functions on permanence of the models. This investigation
clarifies the importance of such properties of population growth rates in considering
the problems of coexistence of species. In the final section, we discuss future works.
A basic theorem and proofs of some mathematical results are given in Appendices.

2. Preliminaries

Let O = {(0, 0)}, R
2+ = {(x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 0}, intR2+ = {(x1, x2) ∈
R

2+ : x1x2 > 0} and bdR
2+ = {(x1, x2) ∈ R

2+ : x1x2 = 0}.
Now, we introduce some notations for a discrete dynamical system F : X → X,

where X is a metric space. The orbit starting at x is the set

γ+(x) = {y : y = F t(x) for t ∈ Z+}.
The omega limit set is defined by

�(x) = {y : F tj (x) → y for some sequence tj → ∞}.
For a subset X0 ⊂ X put

γ+(X0) =
⋃

x∈X0

γ+(x), �(X0) =
⋃

x∈X0

�(x).

X0 is said to be forward invariant if F(X0) ⊂ X0. The set M is absorbing for X0
if it is forward invariant and γ+(x) ∩ M �= ∅ for every x ∈ X0. Therefore, if M is
absorbing for X0, then every orbit starting in X0 eventually enters M and remains
there.

Definition 2.1. The system F is said to be dissipative if there exists a compact
absorbing set X0 for X.

Remark. If F is continuous, the forward invariance of the above X0 is not necessary
for dissipativeness of F since the forward invariance is achieved by considering
γ+(X0) (see Appendix A).

We define permanence of System (1.1) as follows:

Definition 2.2. System (1.1) is said to be permanent if there exists a compact
absorbing set M ⊂ intR2+ for intR2+.

This definition implies that if System (1.1) is permanent, then there exists a δ > 0
such that

δ ≤ lim inf
t→∞ xi(t) ≤ lim sup

t→∞
xi(t) ≤ 1

δ
, i = 1, 2,

for all (x1(0), x2(0)) ∈ intR2+. Therefore, it ensures that if System (1.1) is perma-
nent, then for sufficiently large t population densities of two species are always
greater than a positive constant which is independent of initial conditions.

Finally, we define a saturated fixed point as follows (see Hofbauer and Sigmund
[8], p.159):

Definition 2.3. The fixed point (x∗
1 , x∗

2 )of (1.1) is said to be saturated iffi(x
∗
1 , x∗

2 )≤
1 for all i ∈ {1, 2}.
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3. Permanence

In this section, we obtain a sufficient condition for permanence of System (1.1).
The main result of this paper is Theorem 3.2.

We introduce the following basic assumptions for System (1.1):

(H1): f1 and f2 are positive continuous functions on R
2+,

(H2): System (1.1) is dissipative.

By (H2), System (1.1) has a compact absorbing set X1 for R
2+. The set of

extinction states in X1 is defined by bdR
2+ ∩ X1. We divide the bdR

2+ ∩ X1 into
two sets as follows:

S1 = {(x1, x2) ∈ bdR
2
+ ∩ X1 : x2 = 0},

S2 = {(x1, x2) ∈ bdR
2
+ ∩ X1 : x1 = 0}.

The set Si (i ∈ {1, 2}) implies extinction of the xj -species (i �= j ). For the appli-
cation of an average Liapunov function to System (1.1), it is important to know the
dynamics in S1 ∪ S2. Hereafter, we obtain some lemmas about the dynamics in Si

(i ∈ {1, 2}). Although the following lemma considers the dynamics in S1, the same
result is true for S2:

Lemma 3.1. Suppose that (H1) and (H2) hold. Then, �(S1) = O if System (1.1)
has no fixed points in S1\O.

Proof. Since System (1.1) has no fixed points in S1\O, then f1(x1, 0) �= 1 for all
x1 > 0. By the continuity of f1(x1, 0), either f1(x1, 0) < 1 or f1(x1, 0) > 1 always
holds for x1 > 0. Since System (1.1) is dissipative, we see that f1(x1, 0) < 1 for all
x1 > 0, otherwise all orbits with the initial condition in S1\O diverge. Therefore,
we see that limt→∞ x1(t) = 0 for all (x1(0), x2(0)) ∈ S1\O, that is, �(S1) = O.

�

A time average of the population density plays an important role in application

of an average Liapunov function (see Hofbauer et al. [7] and Kon and Takeuchi
[13,14]). The average population densities are given by

xi(t) = 1

t

t−1∑
n=0

xi(n), i ∈ {1, 2}. (3.1)

For example, the average population density x1(t) can be estimated if the function
ln f1(x1, 0) has one of the following properties:

(A1)1: ln f1(x1, 0) is monotonically decreasing and convex,
(A2)1: ln f1(x1, 0) is monotonically decreasing and concave

(note that if the function is monotonically increasing and vanishes at some x∗
1 > 0,

then System (1.1) has an unbounded orbit on S1). In fact, we have the follow-
ing lemma (we can also introduce the same assumptions (A1)2 and (A2)2 for the
function ln f2(0, x2), and obtain the same result for x2(t) of solutions on S2):
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Lemma 3.2. Let {(x1(t), x2(t))}t∈Z+ be a solution of System (1.1) with
(x1(0), x2(0)) ∈ S1\O. Suppose that (H1) and (H2) hold. Assume that there exists
a sequence tk → ∞ and a δ > 0 such that x1(tk) ≥ δ for all k ∈ Z+. Then, there
exists a fixed point (x∗

1 , 0) ∈ S1\O. Further, there exists a subsequence, again
denoted by tk , such that

x∗
1 ≤ lim

k→∞
x1(tk) if ln f1(x1, 0) is monotonically decreasing and convex

x∗
1 ≥ lim

k→∞
x1(tk) if ln f1(x1, 0) is monotonically decreasing and concave,

where x1 is the average given by (3.1).

Proof. First, we show that System (1.1) has a fixed point (x∗
1 , 0) ∈ S1\O. Sup-

pose that System (1.1) does not have such a fixed point. Then, by Lemma 3.1,
limt→∞ x1(t) = 0 for all x1(0) > 0. This is a contradiction to the assumption for
the existence of a sequence tk .

By (H2), there exists an interval [δ, D] such that x1(tk) ∈ [δ, D] for all k ∈ Z+.
By the first equation of (1.1), we have

ln
x1(n + 1)

x1(n)
= ln f1(x1(n), 0).

After summation of both sides from n = 0 to tk − 1 and dividing by tk , we have

ln x1(tk) − ln x1(0)

tk
= 1

tk

tk−1∑
n=0

ln f1(x1(n), 0).

Since δ ≤ x1(tk) ≤ D for all k ∈ Z+,

0 = lim
k→∞

1

tk

tk−1∑
n=0

ln f1(x1(n), 0). (3.2)

If ln f1(x1, 0) is convex, then Jensen’s inequality (e.g., see [17,21]) gives

1

tk

tk−1∑
n=0

ln f1(x1(n), 0) ≥ ln f1

(
1

tk

tk−1∑
n=0

x1(n), 0

)
. (3.3)

By Eqs (3.2) and (3.3), we have

Lim
k→∞

ln f1

(
1

tk

tk−1∑
n=0

x1(n), 0

)
⊂ (−∞, 0], (3.4)

where Limt→∞ x(t) = {y : limj→∞ x(tj ) = y for some sequence tj → ∞}.
Since ln f1(x1, 0) is monotonically decreasing and ln f1(x

∗
1 , 0) = 0, Eq. (3.4)

implies that there exists a subsequence, again denoted by tk , such that

lim
k→∞

1

tk

tk−1∑
n=0

x1(n) ≥ x∗
1 .
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Similarly, if ln f1(x1, 0) is concave, we can show that there exists a subsequence,
again denoted by tk , such that

lim
t→∞

1

tk

tk−1∑
n=0

x1(n) ≤ x∗
1 . �


We can find a special case of this lemma in Ex 1.6.2 of [8]. Note that the function
ln f1(x1, 0) = r + ax1 with r, a ∈ R is both convex and concave. By Lemma 3.2,
if the function is both convex and concave, limk→∞ x1(tk) = x∗

1 holds. Lotka-
Volterra systems have such growth rate functions (see Hofbauer et al. [7], Lemma
2.4). It is also worth noting that S1\O has at most one fixed point if ln f1(x1, 0) is
monotone.

Fig. 1 is a set of bifurcation diagrams of one-dimensional maps, which corre-
spond to those of (1.1) on S1 (or S2). Fig. 2 shows the average population densities
generated by the one-dimensional maps. From Figs 1 and 2, we confirm that the
result of Lemma 3.2 holds even if there is a complex solution on S1 (or S2).

The convexity or concavity, and monotonicity of ln f2(x1, 0) also influence the
dynamics of System (1.1). We introduce the following different sets of assumptions:

(B1)1: ln f2(x1, 0) is monotonically decreasing and convex;
(B2)1: ln f2(x1, 0) is monotonically decreasing and concave;
(B3)1: ln f2(x1, 0) is monotonically increasing and convex;
(B4)1: ln f2(x1, 0) is monotonically increasing and concave.

We can also introduce the same assumptions (B1)2, (B2)2, (B3)2, and (B4)2 for the
function ln f1(0, x2). Although the following lemma considers the property of the
solution on S1, the same result also holds for the solution on S2.

Lemma 3.3. Let {(x1(t), x2(t))}t∈Z+ be a solution of System (1.1) with
(x1(0), x2(0)) ∈ S1\O. Suppose that (H1) and (H2) hold. Assume that one of
the following conditions (I) or (II) holds:

(I): ln f1(x1, 0) is monotonically decreasing and convex, and ln f2(x1, 0) is
monotonically increasing and convex (i.e., (A1)1 and (B3)1);

(II): ln f1(x1, 0) is monotonically decreasing and concave, and ln f2(x1, 0) is
monotonically decreasing and convex (i.e., (A2)1 and (B1)1).

Further, assume that there exists a sequence tk → ∞ and a δ > 0 such that
x1(tk) ≥ δ for all k ∈ Z+. If the fixed point (x∗

1 , 0) is not saturated, then there
exists a subsequence, again denoted by tk , such that

lim
k→∞

1

tk

tk−1∑
n=0

ln f2(x1(n), 0) > 0.

Proof. By Lemma 3.2, S1\O has a fixed point (x∗
1 , 0). Since ln f2(x1, 0) is con-

vex, there exists ξ and η such that ln f2(x1, 0) ≥ ξx1 + η for all x1 > 0 and
ln f2(x

∗
1 , 0) = ξx∗

1 + η. Then, for every k ∈ Z+

1

tk

tk−1∑
n=0

ln f2(x1(n), 0) ≥ ξ
1

tk

tk−1∑
n=0

x1(n) + η.
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r1
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Fig. 1. Bifurcation diagrams of the one-dimensional map x1(t + 1) = x1(t) exp[r1 −
a11x1(t)

ν11 ] with a11 = 1. The orbits {x1(t)} with x1(0) = 1 are plotted for t ∈
{10001, . . . , 10100}. The function r1 − a11x

ν11
1 in (a), (b) and (c) are chosen convex

(ν11 = 0.5), linear (ν11 = 1) and concave (ν11 = 2), respectively.
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Fig. 2. The average population density x1 produced by the one-dimensional map x1(t+1) =
x1(t) exp[r1 − a11x1(t)

ν11 ] with a11 = 1. The x1 is given by
∑10100

t=10001 x1(t)/100 for the orbit
{x1(t)} with x1(0) = 1. The x1 is represented by the solid line. The dashed line gives a
positive fixed point x∗

1 of the one-dimensional map. The function r1 − a11x
ν11
1 in (a), (b) and

(c) are chosen convex (ν11 = 0.5), linear (ν11 = 1) and concave (ν11 = 2), respectively. (a):
x1 ≥ x∗

1 . (b): x1 almost coincides with x∗
1 . (c): x1 ≤ x∗

1 . See Lemma 3.2.
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By (H2),
∑tk−1

n=0 x1(n)/tk is bounded. By (H1) and (H2),
∑tk−1

n=0 ln f2(x1(n), 0)/tk
is also bounded. Hence, there exists a subsequence, again denoted by tk , such that

lim
k→∞

1

tk

tk−1∑
n=0

ln f2(x1(n), 0) ≥ ξ lim
k→∞

x1(tk) + η.

By Lemma 3.2,

ξ lim
k→∞

x1(tk) + η ≥ ξx∗
1 + η = ln f2(x

∗
1 , 0).

Note that if ln f2(x1, 0) is increasing (the case (I)), then ξ ≥ 0, and if decreasing (the
case (II)), then ξ ≤ 0. Since the fixed point (x∗

1 , 0) is not saturated, ln f2(x
∗
1 , 0) > 0.

This completes the proof. �


To show permanence of (1.1), we need the following theorem:

Theorem 3.1. Consider System (1.1) with (H1) and (H2). Assume that X ⊂ X1
and S ⊂ X ∩ Si for some i ∈ {1, 2}. Let S and X\S be forward invariant. Suppose
that the following inequality holds for every x(0) ∈ �(S):

σj (x(0)) = sup
t≥0

(
exp

[
1

t

t−1∑
n=0

ln fj (x1(n), x2(n))

])t

> 1, (j ∈ {1, 2}, i �= j).

(3.5)

Then there is a compact absorbing set M ⊂ X\S for X\S.

Remark. This theorem is a special case of Theorem 2.2 and Corollary 2.3 of Hutson
[9] with an average Liapunov function P(x1, x2) = xj .

Theorem 3.2. Suppose that (H1) and (H2) hold. Assume that either there are no
fixed points on S1\O, or there is one fixed point on S1\O and one of the following
conditions (I) or (II) holds:

(I): ln f1(x1, 0) is monotonically decreasing and convex, and ln f2(x1, 0) is
monotonically increasing and convex (i.e., (A1)1 and (B3)1);

(II): ln f1(x1, 0) is monotonically decreasing and concave, and ln f2(x1, 0) is
monotonically decreasing and convex (i.e., (A2)1 and (B1)1).

Assume that either there are no fixed points on S2\O, or there is one fixed point on
S2\O and one of the following conditions (I)’ or (II)’ holds:

(I)’: ln f2(0, x2) is monotonically decreasing and convex, and ln f1(0, x2) is
monotonically increasing and convex (i.e., (A1)2 and (B3)2);

(II)’: ln f2(0, x2) is monotonically decreasing and concave, and ln f1(0, x2) is
monotonically decreasing and convex (i.e., (A2)2 and (B1)2).

Then, System (1.1) is permanent if it has no saturated fixed points in bdR
2+.
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Proof. Since the fixed point (0, 0) is not saturated, then there exists an i ∈ {1, 2}
such that fi(0, 0) > 1. We assume that i = 1 without loss of generality.

By (H1), it is clear that S2 and X1\S2 are forward invariant. Let us show that
the following inequality holds for every x(0) ∈ �(S2):

σ1(x(0)) = sup
t≥0

(
exp

[
1

t

t−1∑
n=0

ln f1(0, x2(n))

])t

> 1.

Since f1(0, 0) > 1, then σ1(x(0)) > 1 for x(0) ∈ O. Therefore, if �(S2) = O,
it is clear that σ1(x(0)) > 1 for all x(0) ∈ �(S2). Suppose that �(x(0)) �= O for
some x(0) ∈ S2. Then, there exists a sequence tk → ∞ and a δ > 0 such that
x2(tk) ≥ δ for all k ∈ Z+. Hence, Lemma 3.2 shows that S2\O has a fixed point,
and Lemma 3.3 shows that σ1(x(0)) > 1. By Theorem 3.1, we see that there exists
a compact absorbing set X2 ⊂ X1\S2 for X1\S2. Therefore, we concentrate on the
dynamics in X2. Similarly to the above, let us show that the following inequality
holds for every x(0) ∈ �(S1 ∩ X2):

σ2(x(0)) = sup
t≥0

(
exp

[
1

t

t−1∑
n=0

ln f2(x1(n), 0)

])t

> 1.

By using Lemmas 3.2 and 3.3, we see that σ2(x(0)) > 1 for all x(0) ∈ S1 ∩ X2.
This implies that System (1.1) is permanent. �


Note that if �(S1 ∪ S2) consists only of fixed points, the convexity or concavity
of ln fi is not important for permanence of (1.1). Indeed, it is well known that
under such assumptions non-existence of saturated fixed points on bdR

2+ implies
permanence of (1.1) irrespective of the convexity or concavity of ln fi .

4. Applications

In this section, we apply Theorem 3.2 to System (1.1) with specific types of inter-
specific interactions. First, we consider the predator-prey type with the following
assumptions:

(PP1): 0 < f2(0, x2) < 1 for all x2 > 0;
(PP2): f1(0, 0) > 1;
(PP3): f1(x1, 0) is monotonically decreasing with x∗

1 > 0 such that f1(x
∗
1 , 0) = 1;

(PP4): f2(x1, 0) is monotonically increasing;

where x1 and x2 denote population densities of a prey and a predator, respectively.
These assumptions are interpreted biologically as follows: Condition (PP1) implies
that the predator cannot survive without the prey. Condition (PP2) means that the
prey can survive by itself. Condition (PP3) implies that the population growth rate
of the prey decreases as its population density increases (intraspecific competi-
tion). Condition (PP4) implies that the invasion rate of the predator increases as the
density of its food (prey) increases.
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For the predator-prey system, we have the following corollary of Theorem 3.2:

Corollary 4.1. Suppose that (H1), (H2), and (PP1)–(PP4) hold. Assume that
ln f1(x1, 0) and ln f2(x1, 0) are convex. Then, System (1.1) is permanent if
f2(x

∗
1 , 0) > 1.

Proof. By (PP1), S2\O does not have a fixed point. By (PP3), the system has a
fixed point in S1\O. Since ln f1(x1, 0) is monotonically decreasing and convex, the
condition (A1)1 holds. Additionally, since ln f2(x1, 0) is monotonically increasing
and convex, the condition (B3)1 holds. Therefore, it is enough to check whether
or not the fixed points in bdR

2+ are saturated. The system has two fixed points,
(0, 0) and (x∗

1 , 0), in bdR
2+. Since f1(0, 0) > 1 and f2(x

∗
1 , 0) > 1, there are no

saturated fixed points in bdR
2+. �


The assumption of ln f1(x1, 0) and ln f2(x1, 0) has the following biological mean-
ings. The convexity of ln f1(x1, 0) is achieved if the intensity of the intraspecific
competition in the prey population shows a decelerating rise. ln f2(x1, 0) is the
number of offspring of the predator when the prey’s population density is x1 and
the predator is very rare. In many predator-prey models, this function is given by
a saturated function (e.g., type I, II, and III functional responses). Therefore, the
assumption that ln f2(x1, 0) is convex is a contradiction to the fact that the function
is saturated. However, if ln f2(x1, 0) has type III functional response (i.e., sigmoidal
functional response), then the function is convex on some interval [0, A]. Hence, if
the prey’s population density is eventually bounded in this interval, the assumption
for ln f2(x1, 0) is satisfied.

Next, consider the competitive type with the following assumptions:

(C1): f1(0, 0) > 1 and f2(0, 0) > 1;
(C2): f1(x1, 0) and f2(0, x2) are monotonically decreasing with x∗

1 > 0 and x∗
2 >

0 such that f1(x
∗
1 , 0) = 1 and f2(0, x∗

2 ) = 1;
(CP): f1(0, x2) and f2(x1, 0) are monotonically decreasing.

These assumptions have the following meanings: Condition (C1) means that both
species can survive if they are isolated from each other. Conditions (C2) and (CP)
imply that intraspecific and interspecific competition are present, respectively.

For the competitive system, we have the following corollary of Theorem 3.2:

Corollary 4.2. Suppose that (H1), (H2), (C1), (C2), and (CP) hold. Assume that
ln f1(x1, 0) and ln f2(0, x2) are concave, and ln f1(0, x2) and ln f2(x1, 0) are con-
vex. Then, System (1.1) is permanent if f1(0, x∗

2 ) > 1 and f2(x
∗
1 , 0) > 1.

Proof. By (C2), the system has fixed points both in S1\O and S2\O. By the
assumptions about the four functions, ln f2(0, x2), ln f1(x1, 0), ln f1(0, x2), and
ln f2(x1, 0), we see that the conditions (A2)1, (A2)2, (B1)1, and (B1)2 hold. Fi-
nally, f1(0, x∗

2 ) > 1, f2(x
∗
1 , 0) > 1 and (C1) ensure that there are no saturated

fixed points in bdR
2+. �


In this corollary, the function ln f1(x1, 0) (or ln f2(0, x2)) is assumed to be concave.
This assumption implies that the intensity of the interspecific competition shows an
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accelerating rise. The assumption that ln f1(0, x2) (or ln f2(x1, 0)) is convex means
that the intensity of the interspecific competition shows a decelerating rise. There-
fore, the assumptions of this corollary imply that the population is more sensitive
to the density of the same species than that of the other species.

Finally, we consider the cooperative type with the following (CO) in addition
to (C1) and (C2) defined above:

(CO): f1(0, x2) and f2(x1, 0) are monotonically increasing.

Condition (CO) means that the growth rate of each species is enhanced by an
increase of the other species’ population density.

The direct application of Theorem 3.2 gives a sufficient condition for perma-
nence of the cooperative system. However, by applying Theorem 3.1 directly to the
system, we can easily obtain a better condition than the one given by Theorem 3.2
without assuming the condition (C2).

Theorem 4.1. Suppose that (H1), (H2), (C1), and (CO) hold. Then, System (1.1) is
permanent.

Proof. By (H1), it is clear that S2 and X1\S2 are forward invariant. We can easily
see that σ1(x(0)) > 1 for all x(0) ∈ S2. Indeed, since f1(0, x2) is monotonically
increasing and f1(0, 0) > 1, then

σ1(x(0)) ≥ sup
t≥0

(
exp

[
1

t

t−1∑
n=0

ln f1(0, 0)

])t

> 1.

Hence, Theorem 3.1 shows that there exists a compact absorbing set X2 ⊂ X1\S2
for X1\S2. Consider the dynamics in X2. The following inequality holds for all
x(0) ∈ S1 ∩ X2

σ2(x(0)) ≥ sup
t≥0

(
exp

[
1

t

t−1∑
n=0

ln f2(0, 0)

])t

> 1,

since f2(x1, 0) is monotonically increasing and f2(0, 0) > 1. This implies that the
system is permanent. �

Remark. In this theorem, it is assumed that (H2) holds, that is, the system is dissi-
pative. See Appendix B for a dissipative example of cooperative systems.

5. Specific examples

In this section, we consider the dynamics of the following model:{
x1(t + 1) = x1(t) exp[β1 + α11x1(t)

ν11 + α12x2(t)
ν12 ]

x2(t + 1) = x2(t) exp[β2 + α21x1(t)
ν21 + α22x2(t)

ν22 ],
(5.1)

where αij , βi ∈ R and νij > 0, (i, j ∈ {1, 2}). The model clearly satisfies the
condition (H1). Depending on the sign of the parameters αij (i, j ∈ {1, 2}), System
(5.1) can become predator-prey, competitive, and cooperative systems.
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5.1. Predator-prey systems

Let (
β1
β2

)
=
(

r1
−r2

)
and

(
α11 α12
α21 α22

)
=
(−a11 −a12

a21 0

)
,

where ri and aij (i, j ∈ {1, 2}) are positive. Then, System (5.1) expresses the
population dynamics of the prey x1 and the predator x2. We see that System (5.1)
with such parameters satisfies the condition (PP1)–(PP4). With the new parameter
notations, System (5.1) is rewritten as follows:

{
x1(t + 1) = x1(t) exp[r1 − a11x1(t)

ν11 − a12x2(t)
ν12 ]

x2(t + 1) = x2(t) exp[−r2 + a21x1(t)
ν21 ],

(5.2)

where all parameters are positive constants.
The permanence condition of this system is given as follows:

Corollary 5.1. Assume that 0 < ν11 ≤ 1 and ν21 ≥ 1. Then, System (5.2) is
permanent if

(
r1

a11

) 1
ν11

>

(
r2

a21

) 1
ν21

.

Proof. The condition (H2) holds, since System (5.2) is dissipative (see Appendix
C). We see that (PP1)–(PP4) hold. The functions ln f1(x1, 0) and ln f2(x1, 0) are
convex if 0 < ν11 ≤ 1 and ν12 ≥ 1. Indeed, under such assumptions, the second
order derivatives of the functions are positive. Since the fixed point (x∗

1 , 0) is not
saturated, i.e., f2(x

∗
1 , 0) > 1, Corollary 4.1 completes the proof. �


Remark. Note that if the inequality is reversed, clearly the system is not permanent,
since a boundary fixed point is saturated and attracts an interior orbit.

Since System (5.2) can have not only a fixed point but also a periodic orbit on the
x1-axis (see Fig. 1), there could exist an interior orbit which converges to such
a periodic orbit. However, this corollary ensures that under the assumption that
0 < ν11 ≤ 1 and ν21 ≥ 1 there are no interior orbits which converge to the periodic
orbit on the x1-axis as long as the fixed point (x∗

1 , 0) is unsaturated.
Hereafter, we consider the case where either 0 < ν11 ≤ 1 or ν21 ≥ 1 does not

hold, that is, either ln f1(x1, 0) or ln f2(x1, 0) is not convex. In such a case, we
can observe an interesting dynamics in the neighborhood of the x1-axis (see also
Hutson and Moran [11], Hadeler and Gerstmann [5], Neubert and Kot [20], Kon
and Takeuchi [12,13], and Kot [15], pp.181–197).

Consider the stability of the periodic orbit p(m) = {(p(m)
1 (i), 0)}i=1,... ,m on the

x1-axis. The stability is determined by the following Jacobian matrix:

J (m) =
m∏

i=1

J (p
(m)
1 (i), 0),
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where

J (x1, x2) =
(

J11(x1, x2) J12(x1, x2)

J21(x1, x2) J22(x1, x2)

)
,

J11(x1, x2) = (1 − a11ν11x
ν11
1 ) exp[r1 − a11x

ν11
1 − a12x

ν12
2 ]

J12(x1, x2) = −a12ν12x1x
ν12−1
2 exp[r1 − a11x

ν11
1 − a12x

ν12
2 ]

J21(x1, x2) = a21ν21x
ν21−1
1 x2 exp[−r2 + a21x

ν21
1 ]

J22(x1, x2) = exp[−r2 + a21x
ν21
1 ].

Since J21(p
(m)
1 (i), 0) = 0 for all i ∈ {1, . . . , m}, the periodic orbit p(m) is stable if

|λ(m)
1 | =

∣∣∣∣∣
m∏

i=1

J11(p
(m)
1 (i), 0)

∣∣∣∣∣
=
∣∣∣∣∣

m∏
i=1

(1 − a11ν11(p
(m)
1 (i))ν11) exp[r1 − a11(p

(m)
1 (i))ν11 ]

∣∣∣∣∣ < 1

and

|λ(m)
2 | = λ

(m)
2 =

m∏
i=1

J22(p
(m)
1 (i), 0)

= exp

[
m

(
−r2 + a21

1

m

m∑
i=1

(p
(m)
1 (i))ν21

)]
< 1.

Note that p(1) corresponds to the fixed point (x∗
1 , 0), and λ

(1)
2 > 1 implies that the

fixed point (x∗
1 , 0) is unsaturated. λ

(m)
1 and λ

(m)
2 determine the internal and trans-

versal stability of p(m), respectively. Hence, we see that if λ
(m)
2 < 1 holds, then

there exists an interior orbit which converges to p(m). Additionally, if |λ(m)
1 | < 1

also holds, then p(m) is stable.
Fig. 3 is the parameter space demarcated with the stability of the boundary

periodic orbit p(m) and the positive fixed point of (5.2). In the hatched region of
Fig. 3, the positive fixed point is stable. The internal stability of the boundary peri-
odic orbit p(m) is estimated by Fig. 1 since the internal stability is identical to the
stability of the periodic orbit {p(m)

1 (i)}i=1,... ,m of the following one-dimensional
map:

x1(t + 1) = x1(t) exp[r1 − a1x1(t)
ν11 ].

For example, the boundary periodic orbit p(2) is internally stable (|λ(2)
1 | < 1) if r

is approximately in the interval [4, 5] in Fig. 3 (a) and (b), and [1, 1.25] in Fig. 3
(c) and (d). The boundary of the transversal stability of p(m), which is internally
stable, is given by the thin dashed line in Fig. 3. Therefore, with the information
on the internal stability estimated by Fig. 1, we confirm that in Fig. 3 (a) and (b),
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both |λ(2)
1 | < 1 and |λ(2)

2 | < 1 hold if r1 ∈ [4, 5], and a21 is below the thin dashed

line; and in Fig. 3 (c) and (d), |λ(2)
1 | < 1 and |λ(2)

2 | < 1 hold if r1 ∈ [1, 1.25], and
a21 is below the thin dashed line. From Fig. 3 we see that if either ln f1(x1, 0) or
ln f2(x1, 0) is not convex (Fig. 3 (a), (c) and (d)), there exists a parameter region
(gray region) where λ

(1)
2 > 1 and λ

(m)
2 < 1 simultaneously hold for some m ∈ Z+.

These results imply that under the assumption that either ln f1(x1, 0) or ln f2(x1, 0)

is not convex, system (5.2) without saturated fixed points in bdR
2+ (λ(1)

2 > 1) is not
necessarily permanent.

Moreover, in Fig. 3 (a) and (c), there is a parameter region (denoted by A)
where both the positive fixed point and the boundary periodic orbits are stable
(see also Fig. 4, which is the magnified pictures of Fig. 3 (a) and (c)). The typical
solutions of (5.2) with the parameters in such parameter regions are shown in Fig.
5. Fig.5 shows the solution of the bistable system. By this coexistence of multiple
attractors, we see that the existence of the stable positive fixed point is not sufficient
for permanence.

5.2. Competitive systems

Similarly to the predator-prey system, we consider the dynamics of competitive
systems. Let

(
β1
β2

)
=
(

r1
r2

)
and

(
α11 α12
α21 α22

)
=
(−a11 −a12

−a21 −a22

)
,

where ri and aij (i, j ∈ {1, 2}) are positive. With the new parameter notations,
System (5.1) is rewritten as follows:

{
x1(t + 1) = x1(t) exp[r1 − a11x1(t)

ν11 − a12x2(t)
ν12 ]

x2(t + 1) = x2(t) exp[r2 − a21x1(t)
ν21 − a22x2(t)

ν22 ],
(5.3)

where all parameters are positive constants. This system satisfies the condition (C1),
(C2), and (CP). Therefore, we can apply Corollary 4.2 to System (5.3).

Corollary 5.2. Assume that ν11 ≥ 1, ν22 ≥ 1, 0 < ν12 ≤ 1, and 0 < ν21 ≤ 1.
Then, System (5.3) is permanent if

(
r2

a21

) 1
ν21

>

(
r1

a11

) 1
ν11

and

(
r1

a12

) 1
ν12

>

(
r2

a22

) 1
ν22

.

Proof. Obviously the condition (C1), (C2), and (CP) hold. Since System (5.3) is
dissipative, (H2) holds (see Appendix C). By considering the second order deriv-
atives of the functions, we see that ln f1(x1, 0) and ln f2(0, x2) are concave, and
ln f1(0, x2) and ln f2(x1, 0) are convex. Since both boundary fixed points (x∗

1 , 0)
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(a) (b)

(c) (d)

Fig. 3. The r1-a21 parameter space for the predator-prey system (5.2). The thick broken line
is the boundary of the transversal stability of the fixed point (x∗

1 , 0). Above this line, the fixed
point (x∗

1 , 0) is unsaturated. The thin dashed line is the boundary of the transversal stability
of the periodic orbit, which is internally stable on the x1-axis. Below the line, the periodic
orbit is transversally stable. The dot-dashed line is a boundary for the internal stability of the
fixed point (x∗

1 , 0) (see also Fig. 1). The thick solid and broken lines give a hatchet region in
which the positive fixed point of System (5.2) is stable. The parameters are a11 = 1, r2 = 1,
a12 = 1, and ν12 = 1. In (a), (c), and (d), we can observe that there exists a parameter region
(gray region) in which the fixed point (x∗

1 , 0) is unsaturated, and a stable periodic orbit exists
in bdR

2
+. The thin dashed line is never above the thick broken line in (b) (see Corollary 5.1).

In (a) and (c), we can clearly observe that there is a parameter region (denoted by A) in
which both the positive fixed point of (5.2) and the periodic orbit in bdR

2
+ are stable (see

also Fig. 4).

and (0, x∗
2 ) are unsaturated, i.e., f2(x

∗
1 , 0) > 1 and f1(0, x∗

2 ) > 1, Corollary 4.2
completes the proof. �


Remark. Note that if one of the inequalities is reversed, clearly the system is not
permanent, since a boundary fixed point is saturated and attracts an interior orbit.

Hereafter, we consider the case where either ν11 ≥ 1 or ν21 ≤ 1 does not hold,
that is, ln f1(x1, 0) is not concave or ln f2(x1, 0) is not convex. In this case, we can
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Fig. 4. The enlarged r1-a21 parameter space for the predator-prey system (5.2) given in Fig. 3.
Fig. 4 (a) and (b) correspond to Fig. 3 (a) and (c), respectively. The population dynamics
with the parameters corresponding to the solid dots in (a) and (b) are given in Fig. 5 (a) and
(b), respectively.

find an interesting dynamics in the neighborhood of the x1-axis similar to the pred-
ator-prey systems. Note that if either ν22 ≥ 1 or ν12 ≤ 1 does not hold, we can also
find similar dynamics in the neighborhood of the x2-axis. Consider the stability of
the periodic orbit p(m) = {(p(m)

1 (i), 0)}i=1,... ,m on the x1-axis. The periodic orbit
p(m) is stable if

|λ(m)
1 | =

∣∣∣∣∣
m∏

i=1

(1 − a11ν11(p
(m)
1 (i))ν11) exp[r1 − a11(p

(m)
1 (i))ν11 ]

∣∣∣∣∣ < 1
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Fig. 5. The population dynamics of System (5.2) with the parameters a11 = 1, r2 = 1,
a12 = 1, and ν12 = 1. The population dynamics with the initial population densities
(x1(0), x2(0)) = (1, 1) and (1, 0.1) are given in the top figures of (a) and (b). The solu-
tion with (x1(0), x2(0)) = (1, 1) converges to the positive fixed point, but the solution with
(x1(0), x2(0)) = (1, 0.1) converges to the boundary fixed point. The lower two figures of
(a) and (b) give temporal fluctuations of the prey and the predator with the initial population
density (x1(0), x2(0)) = (1, 0.1). (a): The parameters are ν11 = 0.5, ν21 = 0.1, r1 = 4.5,
and a21 = 0.76. In the system with the initial population density (x1(0), x2(0)) = (1, 0.1),
the predator goes to extinction and the prey fluctuates with period two. (b): The parameters
are ν11 = 2, ν21 = 0.1, r1 = 2, and a21 = 1.005. In the system with the initial population
density (x1(0), x2(0)) = (1, 0.1), the predator goes to extinction and the prey fluctuates
aperiodically.

and

|λ(m)
2 | = λ

(m)
2 = exp

[
m

(
r2 − a21

1

m

m∑
i=1

(p
(m)
1 (i))ν21

)]
< 1.

λ
(m)
1 and λ

(m)
2 determine the internal and transversal stability of p(m), respectively.

Fig. 6 is the parameter space demarcated with the transversal stability of the
fixed point and the periodic orbit on the x1-axis. The boundary of the transversal
stability of the boundary fixed point is given by the thick broken line. The thin dot-
ted line is the boundary of the transversal stability of the boundary periodic orbit,
which is internally stable. Above the line there exists a stable boundary periodic
orbit on the x1-axis, i.e., |λ(m)

1 | < 1 and |λ(m)
2 | < 1 hold for some m ∈ Z+. In the

gray region, we can find a parameter set, which satisfies λ
(1)
2 > 1 and λ

(m)
2 < 1

for some m ∈ Z+. From Fig. 6, we confirm that this region exists if either ν11 ≥ 1
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(a) (b)

(c) (d)

Fig. 6. The r1-a21 parameter space for the competitive system (5.3). The thick broken line is
the boundary of transversal stability of the fixed point (x∗

1 , 0). Below the line, the fixed point
(x∗

1 , 0) is unsaturated. The thin dashed line is the boundary of transversal stability of the
periodic orbit which is internally stable on the x1-axis. Above the line, the periodic orbit is
transversally stable. The dot-dashed line is a boundary for the internal stability of the positive
fixed point (x∗

1 , 0) (see also Fig. 1). Similarly to Fig. 3, the parameter region (gray region)
which is below the thick broken line and above the thin dashed line implies that there exists
a periodic orbit on the x1-axis that attracts an interior orbit even if the fixed point (x∗

1 , 0) is
unsaturated. We can find such a parameter region in (a), (b), and (d). The thin dashed line
is never below the thick broken line in (c) (see Corollary 5.2). The parameters are a11 = 1,
r2 = 1.

or ν21 ≤ 1 does not hold. Therefore, we see that under the assumption that either
ln f1(x1, 0) is not concave or ln f2(x1, 0) is not convex, unsaturated fixed points
do not always imply permanence of System (5.3).

5.3. Cooperative systems

Let

(
β1
β2

)
=
(

r1
r2

)
and

(
α11 α12
α21 α22

)
=
(−a11 a12

a21 −a22

)
,
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where ri and aij (i, j ∈ {1, 2}) are positive. With the new parameter notations,
System (5.1) is rewritten as follows:

{
x1(t + 1) = x1(t) exp[r1 − a11x1(t)

ν11 + a12x2(t)
ν12 ]

x2(t + 1) = x2(t) exp[r2 + a21x1(t)
ν21 − a22x2(t)

ν22 ],
(5.4)

where all parameters are positive constants. This system satisfies the conditions
(C1), (C2) and (CO). Therefore, by Theorem 4.1, if ever System (5.4) is dissipa-
tive, then it is permanent. However, it is known that System (5.4) with νij = 1 for all
i, j ∈ {1, 2} is not dissipative (see Lu and Wang [16]). It is a future work to consider
the dissipativeness of (5.4) with νij �= 1 for some i, j ∈ {1, 2}. When the terms
concerning to the positive effect from the other species, aij xj (t)

νij (i �= j ), are
replaced by saturated functions, the system becomes dissipative (see Appendix B).

6. Discussion

We obtained a sufficient condition for permanence of System (1.1) by using Hut-
son’s theorem (Theorem 3.1). This theorem implies that System (1.1) is permanent
if all invariant sets in bdR

2+ are unsaturated (see Schreiber [22]). An invariant set
in bdR

2+ of System (1.1) is determined by an invariant set of a corresponding one-
dimensional map. For example, an invariant set on the x1-axis of System (1.1) is
determined by an invariant set of the following map:

x1(t + 1) = x1(t)f1(x1(t), 0). (6.1)

It is well known that Eq. (6.1) can have rich dynamics (for example, see May and
Oster [18]) and complex invariant sets. Therefore, when we directly apply Hutson’s
theorem to System (1.1), we have to consider such complex invariant sets in bdR

2+
mathematically. However, the result of this paper (see Theorem 3.2) gives a simple
condition by which we can assure permanence of System (1.1) without knowing
the explicit structure of the complex invariant sets in bdR

2+.
In Theorem 3.2, one of the following conditions is assumed to be satisfied for

every i ∈ {i : Si\O has a fixed point}: (I): (A1)i and (B3)i , (II): (A2)i and (B1)i .
Under this assumption, nonexistence of boundary saturated fixed points implies
permanence of System (1.1) with (H1) and (H2). As described in Corollaries 5.1
and 5.2, the above assumption is reduced to the condition that ln f1(x1, 0) and
ln f2(x1, 0) are convex for System (5.2) and that ln f1(x1, 0) and ln f2(0, x2) are
concave, and ln f1(0, x2) and ln f2(x1, 0) are convex for System (5.3). In Section
5, by analyzing the specific population models (5.2) and (5.3), we showed that the
above assumptions are important. Indeed, we showed that if System (5.2) satisfies
one of the following conditions (III), (IV) and (V): (III) (A1)1 and (B4)1; (IV)
(A2)1 and (B3)1; and (V) (A2)1 and (B4)1, then it is possible that System (5.2)
is not permanent even if all fixed points in bdR

2+ are unsaturated (see Fig. 3–5).
Similarly, we showed that if System (5.3) satisfies one of the following conditions
(VI), (VII) and (VIII): (VI) (A1)1 and (B1)1; (VII) (A1)1 and (B2)1; and (VIII)
(A2)1 and (B2)1, then it is possible that System (5.3) is not permanent even if all
fixed points in bdR

2+ are unsaturated (see Fig. 6). It is a future work to obtain the
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necessary structure which ensures that nonexistence of boundary saturated fixed
points implies permanence of (1.1). Note that in Theorem 4.1, we showed that the
cooperative system with (C1) and (CO) is permanent irrespective of the convexity
and concavity properties of the growth rate functions if the system is dissipative.

We can find that an attractive positive fixed point and an attractive boundary peri-
odic or chaotic orbits can exist simultaneously in System (5.2), if either ln f1(x1, 0)

or ln f2(x1, 0) is not convex (see Figs 4 and 5, and also Hutson and Moran [11],
Hadeler and Gerstmann [5], Neubert and Kot [20], and Kot [15], pp.181–189 for
the phenomena found in other population models). This phenomenon implies that
the predator can go to extinction depending on the initial population densities even
if a positive fixed point is stable and a boundary fixed point of the prey is unstable.
We see that in this sense the existence of the stable positive fixed point does not
imply coexistence of species.

It is well known that the following Kolmogorov system with continuous time
can have an invariant set other than fixed points in bdR

n+ if n ≥ 3 (for example, see
Hofbauer and Sigmund [8], p.34):

dxi

dt
= xifi(x1, . . . , xn) i = 1, . . . , n. (6.2)

In most of the studies that investigate permanence of System (6.2), it is assumed
that the omega limit set in bdR

n+ consists only of fixed points (for example, see
Hutson and Law [10] and Mukherjee et al. [19], but see also Gard [4]). To apply
our method which focuses on the convexity or concavity of the population growth
rate functions to System (6.2) is a future work (but see Mukherjee et al. [19]).
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A. Basic theorems

Theorem A.1 (Hutson [9], Lemma 2.1 and Hofbauer et al. [7], Lemma 2.1). Let
F : X → X be continuous, where X is a metric space. Let U be an open set
with compact closure, and suppose that V is open and forward invariant, where
U ⊂ V ⊂ X. Then if γ+(x) ∩ U �= ∅ for every x ∈ V , γ+(U) is compact and
absorbing for V .

By this theorem, we see that if there exists a compact set X0 such that γ+(x) ∩
(intX0) �= ∅ for every x ∈ X, then γ+(X0) is compact and absorbing for X, i.e., F

is dissipative.
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B. A dissipative example of cooperative systems

Consider the following system:



x1(t + 1) = x1(t) exp

[
r1 − a11x1(t) + a12x2(t)

1 + x2(t)

]

x2(t + 1) = x2(t) exp

[
r1 + a21x1(t)

1 + x1(t)
− a22x2(t)

]
,

where the parameters ri and aij (i, j ∈ {1, 2}) are positive. This system satisfies the
conditions (C1), (C2), and (CO). Since the positive effects from the other species
are saturated, i.e., x/(1+x) ≤ 1 holds, every solution of the above system satisfies{

x1(t + 1) ≤ x1(t) exp [r1 − a11x1(t) + a12]
x2(t + 1) ≤ x2(t) exp [r1 + a21 − a22x2(t)] .

These inequalities imply dissipativeness of the system since x exp[r −ax+b] has a
maximum. Therefore, by Theorem 4.1, the above cooperative system is permanent.

C. Dissipativeness of Systems (5.2) and (5.3)

Lemma C.1. Systems (5.2) and (5.3) are dissipative.

Proof. First, we shall show that System (5.2) is dissipative. By the first equation
of (5.2), we have

x1(t + 1) ≤ x1(t) exp[r1 − a11x1(t)
ν11 ]

≤
(

1

a11ν11

) 1
ν11

exp

[
r1 − 1

ν11

]
= K1, (C.1)

since x1 exp[r1 − a11x
ν11
1 ] has a maximum at x1 = (1/(a11ν11))

1/ν11 . Hence, all
orbits in R

2+ eventually enter M = {(x1, x2) ∈ R
2+ : x1 ≤ K1}, where x = (x1, x2),

and remain there. If K1 < (r2/a21)
1/ν21 , we can easily show that System (5.2) is

dissipative, since x2(t + 1) < x2(t) holds for all x(t) ∈ M . Therefore, we assume
that K1 ≥ (r2/a21)

1/ν21 .
Let V (x) = x1x2. By Eq. (5.2), for all x(t) ∈ M we have

V (x(t + 1)) = x1(t) exp[r1 − r2 − a11x1(t)
ν11 + a21x1(t)

ν21 ]

×x2(t) exp[−a12x2(t)
ν12 ]

≤ Lx2(t) exp[−a12x2(t)
ν12 ],

where L = max0≤x1≤K1{x1 exp[r1 − r2 − a11x
ν11
1 + a21x

ν21
1 ]}. Moreover, since

Lx2 exp[−a12x
ν12
2 ] has a maximum at x2 = (1/(a12ν12))

1/ν12 , we have

V (x(t + 1)) ≤ L

(
1

a12ν12

) 1
ν12

exp

[
− 1

ν12

]
= VM (C.2)

for all x(t) ∈ M . Eqs (C.1) and (C.2) imply that all orbits of System (5.3) eventually
enter M0 = M ∩ {x ∈ R

2+ : V (x) ≤ VM} and remain there.
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Consider the orbits in M0. We will show that for every x(0) ∈ M0 there exists
T > 0 such that

x2(t) ≤ VM

(
a21

r2

) 1
ν21

exp[−r2 + a21K
ν21
1 ] = K2

for all t ≥ T . Let divide M0 into three regions as follows (see Fig. 7):

M1 = {x ∈ M0 : x1 ≥
(

r2

a21

) 1
ν21 }

M2 = {x ∈ M0 : x1 <

(
r2

a21

) 1
ν21

, x2 ≤ K2}

M3 = {x ∈ M0 : x1 <

(
r2

a21

) 1
ν21

, x2 > K2}.

By the second equation of (5.2), we have

x2(t + 1) = x2(t) exp[−r2 + a21x1(t)
ν21 ]

< x2(t)

x1

x2

0

VM

(
a21

r2

) 1
ν21

K2

K1

(
r2

a21

) 1
ν21

M1

M2

M3

x1x2 = VM

Fig. 7. The phase plane of the predator-prey system (5.2). See the proof of Lemma C.1.
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for all x(t) ∈ M3. Hence, all orbits in M3 eventually enter M1 ∪M2. For x(t) ∈ M1,
we have

x2(t + 1) = x2(t) exp[−r2 + a21x1(t)
ν21 ]

≤ VM

(
a21

r2

) 1
ν21

exp[−r2 + a21K
ν21
1 ] = K2.

Hence x(t) ∈ M1 implies that x(t + 1) ∈ M1 ∪ M2. For x(t) ∈ M2, we have
x2(t + 1) < x2(t). Therefore, x(t) ∈ M2 implies that x(t + 1) ∈ M1 ∪ M2. It
follows that all orbits in M0 eventually enter M1 ∪ M2 and remain there. This
completes the proof for System (5.2).

Consider dissipativeness of System (5.3). By a similar argument used above,
we can show that x1(t + 1) ≤ K1 for all x(t) ∈ R

2+. Furthermore, by the second
equation of (5.2) we have

x2(t + 1) ≤ x2(t) exp[r2 − a22x2(t)
ν22 ]

≤
(

1

a22ν22

) 1
ν22

exp

[
r2 − 1

ν22

]
,

for all x(t) ∈ R
2+. This completes the proof for System (5.3). �


References

1. Anderson, H.M., Hutson, V., Law, R.: On the conditions for permanence of species in
ecological communities. The American Naturalist 139, 663–668 (1992)

2. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamic complexity in predator-prey mod-
els framed in difference equations. Nature 255, 58–60 (1975)

3. Franke, J.E., Yakubu, A.-A.: Mutual exclusion versus coexistence for discrete competi-
tive systems. J. Math. Bio. 30, 161–168 (1991)

4. Gard, T.C.: Uniform persistence in multispecies population models. Math. Biosci. 85,
96–104 (1987)

5. Hadeler, K.P., Gerstmann, I.: The discrete Rosenzweig model. Math. Biosci. 98, 49–72
(1990)

6. Hassell, M.P.: The spatial and temporal dynamics of host-parasitoid interactions. Oxford
University Press, Oxford, 2000

7. Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference
equations of Lotka-Volterra type. J. Math. Bio. 25, 553–570 (1987)

8. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge
University Press, Cambridge, 1998

9. Hutson, V.: A theorem on average Liapunov functions. Monatshefte für Mathematik 98,
267–275 (1984)

10. Hutson, V., Law, R.: Permanent coexistence in general models of three interacting spe-
cies. J. Math. Bio. 21, 285–298 (1985)

11. Hutson, V., Moran, W.: Persistence of species obeying difference equations. J. Math.
Bio. 15, 203–213 (1982)

12. Kon, R., Takeuchi, Y.: The effect of evolution on host-parasitoid systems. J. Theor. Bio.
209, 287–302 (2001)

13. Kon, R., Takeuchi,Y.: Permanence of host-parasitoid systems. Nonlinear Analysis: The-
ory, Methods & Applications 47, 1383–1393 (2001)



Permanence of discrete-time Kolmogorov systems 81

14. Kon, R., Takeuchi, Y.: Permanence of 2-host 1-parasitoid systems. J. Dyn. Continuous,
Disc. Impul. Syst. 10, 389–402 (2003)

15. Kot, M.: Elements of mathematical ecology. Cambridge University Press, Cambridge,
2002

16. Lu, Z., Wang, W.: Permanence and global attractivity for Lotka-Volterra difference
systems. J. Math. Bio. 39, 269–282 (1999)

17. Mangasarian, O.L.: Nonlinear Programming. Society for Industrial and Applied Math-
ematics, Philadelphia, 1969

18. May, R.M., Oster, G.F.: Bifurcations and dynamics complexity in simple ecological
models. The American Naturalist 110, 573–599 (1976)

19. Mukherjee, D., Bhakta, P.C., Roy, A.B.: Uniform persistence in Kolmogorov models
with convex growth functions. Nonlinear Analysis: Theory, Methods & Applications
34, 427–432 (1998)

20. Neubert, M.G., Kot, M.: The subcritical collapse of predator populations in discrete-time
predator-prey models. Math. Biosci. 110, 45–66 (1992)

21. Ruel, J.J., Ayres, M.P.: Jensen’s inequality predicts effects of environmental variation.
Trends in Ecology & Evolution 14, 361–366 (1999)

22. Schreiber, S.J.: Criteria for Cr robust permanence. J. Diff. Eqs. 162, 400–426 (2000)


