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NONEXISTENCE OF SYNCHRONOUS ORBITS AND CLASS
COEXISTENCE IN MATRIX POPULATION MODELS∗

RYUSUKE KON†

Abstract. Existence of synchronous orbits in a general class of matrix population models is
considered. Our results show that a matrix population model does not possess a synchronous orbit
if the associated directed graph is primitive. Furthermore, it is also shown that if there are no
synchronous orbits, then all classes coexist. To illustrate these results, the density dependent Leslie
matrix model is analyzed.
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1. Introduction. In this paper, we consider the dynamics of structured popu-
lations that are modeled by the following difference equation:

x(t + 1) = Ax(t)x(t), t ∈ Z+,(1)

where Z+ = {0, 1, 2, . . . , }, x(t) = (x1(t), x2(t), . . . , xn(t))�, and Ax = (aij(x)) is an
n×n matrix function of x. This equation is a general framework for matrix population
models in which a population is divided into n classes (e.g., by chronological age,
developmental stage, or habitat position) and the density (or number) of individuals
in the ith class is denoted by xi. Therefore, our interest concentrates on solutions in
the nonnegative cone R

n
+ := {x ∈ R

n : x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0}.
The following equation is a specific example of (1):

⎛
⎜⎜⎜⎜⎜⎝

x1(t + 1)
x2(t + 1)
x3(t + 1)

...
xn(t + 1)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

f1(x(t)) f2(x(t)) · · · fn−1(x(t)) fn(x(t))
p1(x(t)) 0 · · · 0 0

0 p2(x(t)) · · · 0 0
...

...
. . .

...
...

0 0 · · · pn−1(x(t)) 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1(t)
x2(t)
x3(t)

...
xn(t)

⎞
⎟⎟⎟⎟⎟⎠

.

This equation is the (density dependent) Leslie matrix model for the dynamics of
an age-structured population. The variables xi, i = 1, 2, . . . , n, denote the densities
(or numbers) of individuals of age i. The functions fi(x), i = 1, 2, . . . , n, denote the
numbers of offspring produced by one individual of age i, and pi(x), i = 1, 2, . . . , n−1,
denote the probabilities of surviving the ith age-class in one unit of time. This model
assumes that the length of life cycle is fixed at n. In addition to the Leslie matrix
model, we can find many examples of matrix population models in the literature
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[5, 7]. For example, we can find matrix population models incorporating stage or
spatial structure (e.g., see [20, 22]).

One of the interesting topics in the study of matrix population models is syn-
chronization. A typical example of synchronous phenomena is found in a density
dependent Leslie matrix model with a single reproductive age-class (e.g., see [1,
4, 8, 9, 10, 12, 19, 24]). More precisely, in the Leslie matrix model with f1 =
· · · = fn−1 = 0, we can find an orbit {x(t)}t∈Z+

such that each x(t) consists of
a single nonzero entry whose position moves to the right in a unit of time (e.g.,
x(0) = (+, 0, 0, . . . , 0)�,x(1) = (0,+, 0, . . . , 0)�, . . . ). This kind of behavior is called
single year class (SYC) dynamics (e.g., see Davydova, Diekmann, and van Gils [12])
since all but one year class are missing. Recently, the concept of SYC dynamics
was extended, and the term “multiple year class (MYC) dynamics” was introduced
by Mjølhus, Wikan, and Solberg [19]. Synchronous phenomena are also observed in
natural insect populations (e.g., see [14, 17, 18, 21]). Periodical cicadas, inhabiting
the eastern United States, are typical examples. Their nymphs remain underground
for precisely 17 years (or, in the south, 13 years) before emerging from the ground
synchronously and in tremendous numbers. Mature nymphs become adults, mate,
lay their eggs, and die within the few weeks (see [17]). Therefore, the lengths of their
life cycles are fixed (17 or 13 years), and all individuals in each population have the
same age; i.e., all but one year class are missing (this phenomenon corresponds to
SYC dynamics). In order to explain this synchronization, the Leslie matrix model
with f1 = · · · = fn−1 = 0 has been studied.

Although it is known that the structure of the Leslie matrix with a single repro-
ductive age-class can give rise to synchronous phenomena, it is unknown whether this
is the only structure leading to synchronous phenomena. For example, some insect
undoubtedly has two or more reproductive age-classes, but it is not clear whether
the additional reproductive age-classes dissipate synchronous phenomena. In order to
clarify this relationship between the structure of the life cycle and the phenomenon
of synchronization, we will investigate a structure that eliminates synchronous phe-
nomena from a general class of matrix population models.

Synchronous phenomena are characterized by an orbit on the boundary of the
nonnegative cone bdR

n
+ := {x ∈ R

n
+ : x1x2 · · ·xn = 0}. Hence, following Cushing [8],

we define a synchronous orbit as follows.
Definition 1.1 (synchronous orbits). An orbit {x(t)}t∈Z+ of system (1) is said

to be synchronous if x(t) ∈ bdR
n
+ for all t ≥ 0. A synchronous orbit is said to be

nontrivial if x(0) �= 0.
Notice that a synchronous orbit does not have to be periodic. It is clear that an

SYC dynamics pattern does not appear as long as there are no nontrivial synchronous
orbits. Moreover, we see that a nontrivial synchronous orbit always includes some
missing classes.

In this paper, we will show that, under certain assumptions, the primitivity of
the matrix Ax determines the existence of nontrivial synchronous orbits. It is worth
mentioning that Cull and Vogt [6] have addressed the primitivity of a density inde-
pendent Leslie matrix model to study its periodic behavior of age distributions, i.e.,
the periodicity of x(t)/

∑n
i=1 xi(t). As in the study by Cull and Vogt [6], the theory

of nonnegative matrices is very useful in our study, although we are concerned not
with the periodicity of age distributions but with the existence of synchronous orbits.
Since our system involves nonlinear terms, unlike the system of Cull and Vogt [6],
we will obtain a result on class coexistence with bounded population densities due to
the nonlinearity. That is, we will show that, under certain assumptions, nonexistence
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of nontrivial synchronous orbits ensures coexistence of all classes in the sense of c-
permanence, which is defined as follows. (The definition of p-permanence is introduced
below to distinguish population survival from class coexistence.)

Definition 1.2 (c-permanence). System (1) is said to be c-permanent if there
exist positive constants δ > 0 and D > 0 such that

δ ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ D, i = 1, 2, . . . , n,

for all solutions {x(t)}t∈Z+ with x(0) ∈ R
n
+\{(0, 0, . . . , 0)}.

The remainder of this paper is organized as follows. In section 2, we introduce
some notation and assumptions. That section also includes a new result on the bound-
edness of solutions, which will be used to prove permanence of a specific matrix pop-
ulation model in section 5. In section 3, we review a known result on permanence for
population survival (i.e., p-permanence), which is used to consider c-permanence in
the subsequent sections. In section 4, we consider existence of nontrivial synchronous
orbits and class coexistence. That section includes the main results of this paper. In
section 5, we apply our results to the density dependent Leslie matrix model, which
is introduced above, to illustrate our main results. The final section discusses future
problems.

2. Preliminaries. In this section, we introduce some notation, assumptions,
and preliminary results.

For vectors x = (x1, x2, . . . , xn)� and y = (y1, y2, . . . , yn)�, we write x ≥ y if
xi ≥ yi for all i, and x > y if x ≥ y and x �= y. A vector x is called nonnegative
if x ≥ 0, where 0 denotes the zero vector. A matrix A = (aij) is called nonnegative
if aij ≥ 0 for all i, j. Some important properties of nonnegative matrices are listed
in the appendix, which also includes the definitions of irreducibility and primitivity
of matrices and their characteristics. These properties of nonnegative matrices are
extensively used in this paper. For matrices A = (aij) and B = (bij), we write
sign(A) = sign(B) if aij and bij have the same sign −, 0, or +; i.e., the sign pattern
of A is identical with that of B. We also write sign(x) = sign(y) for vectors x and y
if they have the same sign pattern. The set consisting of only the origin is denoted
by O.

Throughout this paper, we always assume that system (1) satisfies the following
conditions (H1)–(H4):

(H1) each aij(x) is continuous,
(H2) Axx ≥ 0 for all x ≥ 0,
(H3) Axx > 0 for all x > 0,
(H4) system (1) is dissipative; i.e., there exists a positive constant D > 0 such that

lim supt→∞
∑n

i=1 xi(t) ≤ D for all solutions {x(t)}t∈Z+
with x(0) ≥ 0.

Assumption (H1) ensures that the map f(x) := Axx, which is the right-hand side
of (1), is continuous. Assumption (H2) implies that all solutions of (1) with x(0) ≥ 0
are always nonnegative. Hence, the nonnegative cone R

n
+ is forward invariant; i.e.,

f(Rn
+) ⊂ R

n
+. Notice that (H2) holds if Ax is nonnegative for all x ≥ 0. Assumption

(H3) implies that no points x > 0 are mapped to the origin. Therefore, assumption
(H3) ensures that R

n
+\O is forward invariant; i.e., f(Rn

+\O) ⊂ R
n
+\O. We can show

that (H3) holds if Ax is nonnegative and irreducible for all x ≥ 0 as follows. Since
Ax is nonnegative for all x > 0, Axx ≥ 0 holds for all x > 0. Suppose that Ayy = 0
for some y > 0 with yk > 0. The irreducibility of Ay ensures that aik(y) > 0 for
some i. Otherwise, there are no paths from the vertices Pk to the other vertices in



NONEXISTENCE OF SYNCHRONOUS ORBITS 619

the directed graph of Ay. This implies that Ay is not strongly connected and hence
not irreducible (see Definition A.3 and Theorem A.4 of the appendix). Therefore,
Axx > 0 holds for all x > 0. Assumption (H4) implies that the total population
density does not explode. We can find many matrix population models that satisfy
assumptions (H1)–(H4) (e.g., see [5, 7]).

In comparison with (H1)–(H3), it is not always easy to check whether system
(1) satisfies (H4). In the rest of this section, we obtain a sufficient condition for the
dissipativity of system (1). To obtain the sufficient condition in Theorem 2.2, we need
the following lemma on dynamical systems.

Lemma 2.1 (Hutson [15, Lemma 2.1]). Let (X, d) be a metric space, and let
f : X → X be a continuous function. Let γ+(x) = {x, f(x), f2(x), . . . } be a semi-
orbit of the discrete dynamical system f : X → X. Let Y ⊂ X be open, and let N
be open with a compact closure N ⊂ Y . Assume that Y is forward invariant and that
γ+(x) ∩ N �= ∅ for every x ∈ Y . Then M = γ+(N) is a compact absorbing set for
Y ; i.e., M is a forward invariant compact subset of Y and γ+(x) ∩M �= ∅ for every
x ∈ Y .

By using this lemma, under assumptions (H1)–(H3), we can obtain the following
theorem of dissipativity.

Theorem 2.2. Assume that (H1)–(H3) hold. Suppose that there exist positive
constants K > 0 and λ∞ > 0 such that the inequalities

∑n
i=1 aij(x) ≤ λ∞, j =

1, 2, . . . , n, hold for all x ∈ R
n
+ with

∑n
i=1 xi ≥ K. Then system (1) is dissipative if

λ∞ < 1.
Proof. Let {x(t)}t∈Z+ be a solution of (1) with x(0) ∈ R

n
+. Suppose that∑n

i=1 xi(t) ≥ K for all t ≥ 0. Then, from (1), we have

n∑
i=1

xi(t) =

n∑
i=1

n∑
j=1

aij(x(t− 1))xj(t− 1)

≤ λ∞

n∑
i=1

xi(t− 1)

...

≤ λt
∞

n∑
i=1

xi(0).

Since λ∞ < 1, we have x(t) → 0 as t → ∞. This is a contradiction. Hence, for every
x(0) ∈ R

n
+ there exists a T ≥ 0 such that

∑n
i=1 xi(T ) < K.

Let X = Y = R
n
+ and N = {x ∈ R

n
+ :

∑n
i=1 xi < K}. Then it is clear that

Y is a forward invariant open subset of X, and N is an open set with a compact
closure N ⊂ Y . By the above argument, we see that γ+(x) ∩N �= ∅ for every x ∈ Y .
Therefore, Lemma 2.1 implies that γ+(N) is a compact absorbing set for Y , that
is, every solution eventually enters the compact set γ+(N) and remains there. This
implies that system (1) is dissipative.

Remark. It is straightforward to see that this theorem improves a result by
Cushing [7] (cf. Theorem 1.2.2 of [7]). In Theorem 1.2.1 of [7], we can find a sufficient
condition that ensures global extinction, i.e., limt→∞ x(t) = 0 for all x(0) ∈ R

n
+. In

this case, the system is certainly dissipative.

3. P-permanence. In this section, we introduce a known result on the p-
permanence of system (1), which is defined as follows.
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Definition 3.1 (p-permanence). System (1) is said to be p-permanent if there
exist positive constants δ > 0 and D > 0 such that

δ ≤ lim inf
t→∞

n∑
i=1

xi(t) ≤ lim sup
t→∞

n∑
i=1

xi(t) ≤ D

for all solutions {x(t)}t∈Z+ with x(0) ∈ R
n
+\O.

A result on p-permanence shall be used to consider class coexistence, i.e., c-
permanence, in sections 4 and 5. We see that if system (1) is p-permanent, then the
total population density

∑n
i=1 xi(t) is eventually bounded within some positive in-

terval. Therefore, p-permanence is a mathematical term corresponding to population
survival.

The recent study by Kon, Saito, and Takeuchi [16] provides a sufficient condition
for the p-permanence of system (1) as follows.

Theorem 3.2 (see [16]). Assume that (H1)–(H4) hold. Suppose that the ma-
trix Ax at the origin, which is denoted by A0, is irreducible. Then system (1) is
p-permanent if the dominant eigenvalue λ0 of A0 satisfies λ0 > 1.

Remark. Since A0 corresponds to the Jacobian matrix of (1) evaluated at the
origin, λ0 > 1 implies that the origin is unstable. Moreover, λ0 < 1 implies that the
origin is stable, i.e., that system (1) is not p-permanent. Therefore, the magnitude
of λ0 determines whether or not system (1) is p-permanent except in the critical case
λ0 = 1.

4. Synchronous orbits and class coexistence. In this main section, we con-
sider the existence of synchronous orbits and the possibility of class coexistence, i.e.,
c-permanence.

The following theorem provides a necessary and sufficient condition for the exis-
tence of a nontrivial synchronous orbit.

Theorem 4.1. Assume that (H1)–(H4) hold. Suppose that A0 is irreducible
and sign(Ax) = sign(A0) holds for all x ∈ bdR

n
+. Then system (1) has a nontrivial

synchronous orbit if and only if A0 is imprimitive.
Proof. Suppose that A0 is imprimitive with index of imprimitivity h > 1. Then,

by Theorem A.7 of the appendix, Ah
0 can be rearranged into quasi-diagonal form by

renumbering the indices of rows and columns. So, without loss of generality, we can
assume

Ah
0 = diag{B1, B2, . . . , Bh},

where B1, B2, . . . , Bh are primitive matrices. Hence, we can choose a z ∈ bdR
n
+\O

such that Akh
0 z ∈ bdR

n
+\O for all k ∈ Z+ (e.g., if B1 is an n1×n1 matrix, then choose

z = (z1, z2, . . . , zn)� with zi > 0 for i = 1, . . . , n1 and zi = 0 for i = n1 + 1, . . . , n).
Since A0 is irreducible and nonnegative, once AT

0 z ∈ intRn
+ := R

n
+\bdR

n
+ holds for

some T ≥ 0, At
0z ∈ intRn

+ holds for all t ≥ T . Otherwise, A0 has a row with only
zero entries, so that A0 is reducible. Therefore, for the z ∈ bdR

n
+\O chosen above,

At
0z ∈ bdR

n
+\O holds for all t ≥ 0.

It is clear that if sign(A) = sign(B) and sign(x) = sign(y) hold for some nonnega-
tive matrices A,B and some nonnegative vectors x,y ∈ R

n
+, then sign(Ax) = sign(By)

holds. Therefore, if we let {x(t)}t∈Z+
be a solution of system (1) with x(0) = z,

then sign(Ax(0)x(0)) = sign(A0z) holds, and inductively sign(Ax(t)) = sign(A0) and
sign(Ax(t−1)x(t−1)) = sign(At

0z) hold for all t ≥ 0. This implies that x(t) ∈ bdR
n
+\O

for all t ∈ Z+, and then {x(t)}t∈Z+
is a nontrivial synchronous orbit.
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Suppose that A0 is primitive. Then, by Theorem A.6 of the appendix, there exists
an integer k ≥ 1 such that Ak

0 > 0. Suppose that there exists a solution {x(t)}t∈Z+

such that x(t) ∈ bdR
n
+\O for all t ≥ 0. Then we have Ax(k−1)Ax(k−2) · · ·Ax(0) > 0.

This is a contradiction. Therefore, there are no nontrivial synchronous orbits.
This theorem ensures that if A0 is primitive, then there are no orbits remaining

in bdR
n
+; that is, every orbit starting in bdR

n
+ leaves there and enters the interior of

R
n
+ after finite iterations. In the rest of this section, we consider whether or not an

interior orbit approaches bdR
n
+ and show that primitivity implies c-permanence. The

following lemma is used below to consider such a problem.
Lemma 4.2. Let (X, d) be a compact metric space, and let f and γ+(x) be the

same as in Lemma 2.1. Let Y be a compact subset of X. Suppose that γ+(x) ∩
(X\Y ) �= ∅ for every x ∈ X and that X\Y is forward invariant. Then there exists a
compact absorbing set M for X with d(M,Y ) > 0.

Proof. Define Ut = {x ∈ X : f t(x) ∈ X\Y }. Let x ∈ Ut. Then f t(x) ∈
X\Y . By the continuity of f , there exists an open neighborhood V (x) of x such
that f t(V (x)) ⊂ X\Y . Hence, V (x) ⊂ Ut. This implies that Ut is open. Since
γ+(x)∩(X\Y ) �= ∅ for every x ∈ X, the family of open sets Ut forms an open cover for
X. Then, by the compactness of X, there exists a finite subcover {Ut1 , Ut2 , . . . , Utm}.
The forward invariance of X\Y implies Ut ⊂ Ut+1. Hence, X ⊂ UT holds for T =
max{t1, t2, . . . , tm}; i.e., fT (X) ⊂ X\Y .

Since f is continuous and X is compact, fT (X) is compact. Let N = fT (X).

Then γ+(N) =
⋃T−1

t=0 f t(N) holds and is compact. Since γ+(N) and Y are compact
and γ+(N) ∩ Y = ∅, d(γ+(N), Y ) > 0 holds. Therefore, we see that γ+(N) is a
compact absorbing set for X with d(γ+(N), Y ) > 0.

By using this lemma, we can show that if A0 is primitive, i.e., there are no
nontrivial synchronous orbits, then there are no interior orbits converging to bdR

n
+,

as follows.
Theorem 4.3. Assume that (H1)–(H4) hold. Suppose that Ax is irreducible

for all x ∈ R
n
+, sign(Ax) = sign(A0) holds for all x ∈ bdR

n
+, and system (1) is

p-permanent. Then system (1) is c-permanent if and only if A0 is primitive.
Proof. By Theorem 4.1, the (⇒) part is clear since an imprimitive A0 leads to a

nontrivial synchronous orbit.
Suppose that A0 is primitive. Since system (1) is p-permanent, by using Lemma

2.1, we can construct a compact absorbing set X for R
n
+\O such that X ∩O = ∅. Let

Y = bdR
n
+ ∩X. By Theorem 4.1, for every x(0) ∈ Y there exists a T ≥ 0 such that

x(T ) ∈ X\Y . Furthermore, since Ax(t) is irreducible for all t ≥ 0, x(t) ∈ X\Y holds
for all t ≥ T . Otherwise, Ax(t) has a row with only zero entries, and thus Ax(t) is
reducible. This fact implies that X\Y is forward invariant. Hence, Lemma 4.2 shows
that there exists a compact absorbing set M for X with d(M,Y ) > 0. This completes
the proof.

Remark. Notice that Ax is assumed to be irreducible not only at x = 0 but also
at x ∈ R

n
+. If Ax is assumed to be irreducible only at x = 0, then we can construct a

matrix function Ax such that (1) has a periodic orbit that visits alternately an interior
point and a boundary point. For instance, consider the following example:

Ax =

(
0 16σ(x1, x2) exp(−x1 − x2)

0.5 0.5σ(x1, x2)

)
,

where σ(x1, x2) is the continuous function defined by

σ(x1, x2) =

{
−x1x2 + 1, 0 ≤ x1x2 < 1,
0, x1x2 ≥ 1.
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1 2 3 n

Fig. 1. The graph of Ax for a semelparous population. This graph has a
loop {1, 2, . . . , n, 1}, whose length is n. Since there are only loops whose lengths
are multiples of n, the greatest common divisor of the lengths are equal to n.
Hence, this graph is imprimitive with index of imprimitivity n.

Note that A0 is irreducible (and primitive), but Ax is reducible if x1x2 ≥ 1. Moreover,
sign(Ax) = sign(A0) holds for all x ∈ bdR

2
+. We see that {(6 ln 2, (3/2) ln 2), (0, 3 ln 2)}

is a periodic orbit of this example.

5. Applications. In this section, we apply the results obtained in the preceding
sections to the (density dependent) Leslie matrix model, which was introduced in
section 1.

For the functions fi(x), i = 1, 2, . . . , n, and pi(x), i = 1, 2, . . . , n − 1, we assume
the following:

(A1) All fi(x) and pi(x) are continuous. f1(x), f2(x), . . . , fn−1(x) are nonnegative,
and fn(x) and p1(x), p2(x), . . . , pn−1(x) are positive for all x ∈ R

n
+.

In order to emphasize that the irreducibility of Ax is determined solely by its sign
pattern, in (A1) we do not assume that the functions pi(x) are less than one. However,
from a biological point of view, they must be less than one since they are survival
probabilities. In the example studied below, we assume the specific functions pi(x)
that satisfy 0 < pi(x) < 1 for all x ∈ R

n
+. It is clear that (A1) ensures that (H1) and

(H2) hold. Since fn(x) and p1(x), p2(x), . . . , pn−1(x) are positive for every x ≥ 0,
the graph G(Ax) of Ax has a loop along which we can run through every vertex of
the graph (see Figure 1), so that G(Ax) is strongly connected (see Theorem A.6 of
the appendix). This implies that Ax is irreducible for every x ≥ 0. Therefore, (A1)
also ensures that (H3) holds. It is clear that dissipativity of the Leslie matrix model
is dependent on the forms of the functions fi and pi. In fact, if they are all constants,
the system becomes linear and hence can exhibit exponential growth. As a nonlinear
example, consider the functions fi(x) and pi(x):

fi(x) =
φi

1 + (
∑n

i=1 μijxj)αi
, i = 1, 2, . . . , n,

pi(x) =
σi

1 + (
∑n

i=1 νijxj)βi
, i = 1, 2, . . . , n− 1,

(2)

where the parameters satisfy φ1, φ2, . . . , φn−1 ≥ 0, φn > 0, 0 < σi < 1, μij > 0,
νij ≥ 0, αi > 0, βi > 0 for all i, j. Note that this specific example satisfies the
condition (A1) and that p1(x), p2(x), . . . , pn−1(x) < 1 hold for all x ∈ R

n
+. In this

specific case, we can choose K > 0 and 0 < λ∞ < 1 such that

f1(x) + p1(x) ≤ λ∞
...

fn−1(x) + pn−1(x) ≤ λ∞

fn(x) ≤ λ∞
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hold for all x ∈ R
n
+ with

∑n
i=1 xi ≥ K. Therefore, Theorem 2.2 ensures that the Leslie

matrix model with such functions is dissipative; i.e., the assumption (H4) holds.
Let us consider p-permanence of the Leslie matrix model. As shown in The-

orem 3.2, the magnitude of the dominant eigenvalue of A0 plays a crucial role for
p-permanence of system (1). The dominant eigenvalue λ0 of A0 usually has a strong
relationship with the so-called inherent net reproductive number R0, which is defined
to be the expected number of offspring per individual per lifetime evaluated by the
constant matrix A0 (see Theorem 1.1.3 of Cushing [7] and Theorem 3 and section 3.1
of Cushing and Yicang [11]). The inherent net reproductive number R0 of the Leslie
matrix is given by

R0 =

n∑
i=1

fi(0)

i∏
j=1

pj−1(0),

where for notational convenience p0(0) is defined to be 1. For the Leslie matrix model,
it is known that R0 > 1 (resp., R0 < 1) if and only if λ0 > 1 (resp., λ0 < 1) (see
Cushing [7] and Cushing and Yicang [11]). Therefore, Theorem 3.2 implies that the
Leslie matrix model is p-permanent if it is dissipative and R0 > 1.

Let us consider primitivity of Ax under the assumption (A1). As mentioned
above, under the assumption (A1), Ax is irreducible for every x ≥ 0. The graph of
Ax with f1(x) = f2(x) = · · · = fn−1(x) = 0 is depicted in Figure 1. A population
with this life cycle is called semelparous. In a semelparous population, individuals
can reproduce only once in their lives. By Theorem A.5 of the appendix, we see that
the index of imprimitivity of Ax for a semelparous population is equal to n, the order
of the matrix Ax; that is, Ax is not primitive for all x ≥ 0. Therefore, Theorem 4.1
ensures that a semelparous population has a nontrivial synchronous orbit. On the
other hand, consider the case where f1(x) = f2(x) = · · · = fn−1(x) = 0 does not
hold. By Theorem A.5, we see that if there are two consecutive fertile age-classes
such that fi(x) > 0 for all x ∈ bdR

n
+, then Ax is primitive for all x ∈ bdR

n
+. Hence,

if f1(x), f2(x), . . . , fn(x) > 0 for all x ∈ bdR
n
+, i.e., all age-classes are fertile, then Ax

is clearly primitive for all x ∈ bdR
n
+. In such a primitive case, Theorem 4.3 ensures

that all age-classes coexist if system (1) is p-permanent.
Figure 2 considers the dynamics of the Leslie matrix model with four age-classes.

We use the functions fi and pi defined by (2). Figure 2(a) shows the population
dynamics of the fourth age-class in an imprimitive Leslie matrix model. From this
figure, we see that the orbit converges to a nontrivial synchronous orbit, where all
but one year class are missing. If individuals in the third age-class are also fertile,
then the orbit stays in the interior of the nonnegative cone. So, we see that all classes
coexists as ensured by Theorem 4.3 (see Figures 2(b) and (c)).

6. Discussion. In this paper, we have considered the existence of nontrivial
synchronous orbits in a general class of matrix population models. In Theorem 4.1,
we showed that the primitivity of the matrix Ax on the boundary bdR

n
+ is essential for

this existence. Furthermore, in Theorem 4.3, we showed that if there are no nontrivial
synchronous orbits, then all classes coexist in the sense of c-permanence. By using
the specific Leslie matrix model, we confirmed these results in section 5.

Since Theorem 4.1 ensures only existence of a nontrivial synchronous orbit, that
orbit’s stability is unknown. However, in our example in Figure 2(a), the nontrivial
synchronous orbit seems to be stable. It is a future problem to consider the rela-
tionship between stability of synchronous orbits and structure of matrix population
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Fig. 2. The population dynamics of the Leslie matrix model with four
age-classes. The left figures show temporal fluctuations of the fourth age-class
density. The parameters are φ1 = 0, φ2 = 0, φ4 = 20, σ1 = σ2 = σ3 = 0.5,
μij = νij = αi = βi = 1 for all i, j, and the initial condition satisfies x1(0) =
x2(0) = x3(0) = x4(0) = 1. The parameter φ3 is chosen as follows: (a) φ3 = 0,
(b) φ3 = 1, (c) φ3 = 5.

models (see [4, 9, 10, 12, 19, 24] for stability of synchronous orbits in semelparous
populations).

In the definition of c-permanence (Definition 1.2), all nonzero orbits are required
to be attracted by some compact set in the interior of the nonnegative cone, intRn

+.
However, we often observe the case where all positive orbits are attracted by some
compact set in intRn

+ even if the system has a nontrivial synchronous orbit; i.e., the
system is not c-permanent. For example, in the Leslie matrix model for a semelparous
population, we can find this type of class coexistence. Therefore, it is an important
future problem to study class coexistence involving synchronous orbits.

Appendix. In this section, we list some useful theorems of nonnegative matrices.
There are several books which discuss the properties of such matrices (e.g., see [2, 3,
5, 13, 23]).

One of the most important properties of nonnegative matrices is irreducibility,
which is defined as follows.

Definition A.1 (irreducibility). A square matrix A is said to be irreducible if
it can be rearranged into the following form by renumbering the indices of rows and
columns: (

B 0
C D

)
,
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where B and D are square matrices and 0 denotes the matrix with only zero entries.
Otherwise A is called irreducible.

An irreducible nonnegative matrix can have multiple eigenvalues whose magni-
tudes are equal to the magnitude of the dominant eigenvalue λ. By the number of
such eigenvalues, irreducible nonnegative matrices are classified as follows.

Definition A.2. Let A be an irreducible nonnegative matrix that has h eigen-
values λ1, λ2, . . . , λh, whose magnitudes are equal to the magnitude of the dominant
eigenvalue λ = λ1. A is called primitive if h = 1, and imprimitive if h > 1. h is
called the index of imprimitivity of A.

The theory of nonnegative matrices has a strong relationship with a graph theory.
Definition A.3. The associated directed graph, G(A), of an n × n matrix A

consists of n vertices P1, P2, . . . , Pn, where an edge leads from Pj to Pi if aij �= 0.
A directed graph G is said to be strongly connected if for any ordered pair (Pi, Pj) of
vertices of G there exists a path which leads from Pi to Pj. Let P = {Pi0 , Pi1 , . . . , Pi�}
be a path in a graph G. Then 
 is the length of P . P is a loop if Pi0 = Pi� .

Irreducibility and the index of imprimitivity are characterized by directed graphs
as follows.

Theorem A.4 (e.g., see Theorem 2.2.7 of [3]). A matrix A is irreducible if and
only if G(A) is strongly connected.

Theorem A.5 (e.g., see Theorem 2.2.30 of [3]). Let A be an irreducible nonneg-
ative matrix. The index of imprimitivity of A is equal to the greatest common divisor
of the lengths of loops in G(A).

Remark. This theorem shows that indices of imprimitivity h (like irreducibility)
depend only on the pattern of a matrix; i.e., every irreducible nonnegative matrix that
has positive entries in exactly the same positions has the same index of imprimitivity.

The following two theorems are utilized in obtaining Theorem 4.1.
Theorem A.6 (e.g., see Theorem 13.8 of [13]). A nonnegative square matrix A

is primitive if and only if there exists an integer k ≥ 1 such Ak > 0.
Theorem A.7 (e.g., see Corollary 13.2 of [13]). If A is an imprimitive matrix

with index of imprimitivity h, then Ah can be rearranged into the following quasi-
diagonal form by renumbering the indices of rows and columns:

diag{A1, A2, . . . , Ah} =

⎛
⎜⎜⎜⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ah

⎞
⎟⎟⎟⎠ ,(3)

where A1, A2, . . . , Ah are primitive matrices with the same dominant eigenvalue and
0 denotes the matrix with only zero entries.
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[14] K. Heliövaara, R. Väisänen, and C. Simon, Evolutionary ecology of periodical insects, Trends
in Ecology and Evolution, 9 (1994), pp. 475–480.

[15] V. Hutson, A theorem on average Liapunov functions, Monatsh. Math., 98 (1984), pp. 267–
275.

[16] R. Kon, Y. Saito, and Y. Takeuchi, Permanence of single-species stage-structured models,
J. Math. Biol., 48 (2004), pp. 515–528.

[17] M. Lloyd and H. S. Dybas, The periodical cicada problem. I. Population ecology, Evolution,
20 (1966), pp. 133–149.

[18] R. M. May, Periodical cicadas, Nature, 277 (1979), pp. 347–349.
[19] E. Mjølhus, A. Wikan, and T. Solberg, On synchronization in semelparous populations, J.

Math. Biol., 50 (2005), pp. 1–21.
[20] M. G. Neubert and H. Caswell, Density-dependent vital rates and their population dynamic

consequences, J. Math. Biol., 41 (2000), pp. 103–121.
[21] T. M. Powledge, The 17-year itch, Scientific American, 290 (2004), pp. 32–33.
[22] J. A. L. Silva, M. L. de Castro, and D. A. R. Justo, Synchronism in a metapopulation

model, Bull. Math. Biol., 62 (2000), pp. 337–349.
[23] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer Ser. Comput. Math. 27, Springer-

Verlag, Berlin, 2000.
[24] A. Wikan and E. Mjølhus Overcompensatory recruitment and generation delay in discrete

age-structured population models, J. Math. Biol., 35 (1996), pp. 195–239.


