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Abstract. This paper considers constants of motion for the Lotka-
Volterra and replicator equations. It is known that these two equa-
tions are topologically equivalent. By using this property, we ob-
tain new constants of motion for the two equations. These con-
stants of motion provide conservation law for the special cases of
the predator-prey population dynamics and the rock-scissors-paper
game dynamics.

1. Introduction

In this paper, by focusing on the equivalence between Lotka-Volterra and replicator
equations, we will obtain new constants of motion for these equations.

The Lotka-Volterra equation is one of the most fundamental models representing
population dynamics of interacting species and is defined as follows:

(1) ẋi = xi(ri +
n∑

j=1

aijxj), i = 1, 2, . . . , n,

where ẋi = dxi/dt. The variables xi(t), i = 1, 2, . . . , n denote the population
densities of species i at time t. We can easily see that the non-negative cone
Rn

+ := {x ∈ Rn
+ : x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0} is forward invariant. The parameters

ri are intrinsic growth (or decay) rates and aij describe the effect of species j upon
the growth of species i. The n×n matrix A = (aij) is called the interaction matrix.

On the other hand, the replicator equation, which describes the evolution of the
frequencies of strategies in a population, is defined as follows:

(2) ẏi = yi((By)i − y ·By), i = 0, 1, . . . , n,

where ẏi = dyi/dt, y = (y0, y1, . . . , yn)>, B = (bij) is an (n + 1)× (n + 1) matrix,
(By)i =

∑n
j=0 bijyj and “·” indicates an inner product. The variables yi, i =

0, 1, . . . , n denote the frequencies of strategy i in a population at time t. So, yi

should be in the interval [0, 1] and y0 +y1 + · · ·+yn = 1. We can easily see that the
simplex Sn+1 := {y ∈ Rn+1

+ : y0 +y1 + · · ·+yn = 1} is forward invariant. Therefore,

Hyperbolic Problems, Theory, Numerics and Applications II (F. Asakura, H. Aiso, 
S. Kawashima, A. Matsumura, S Nishibata and K. Nishihara eds., Yokohama Publishe
rs), pp.109--116.



2 RYUSUKE KON

as long as the initial values are on the simplex Sn+1, y0 + y1 + · · ·+ yn = 1 remains
unity and each yi is non-negative. The parameters bij represents the expected
payoff of an individual player with pure strategy i when the player meets a player
with pure strategy j. The (n + 1) × (n + 1) matrix B = (bij) is called the payoff
matrix.

It is known that these two equations, the Lotka-Volterra and replicator equations,
are topologically equivalent in the following sense:
Theorem 1.1 ([1] and [2], Theorem 7.5.1). There exists a differentiable, invertible
map ψ from Ŝn+1 = {y ∈ Sn+1 : y0 > 0} onto Rn

+ mapping the orbits of the
replicator equation (2) onto the orbits of the Lotka-Volterra equation (1) with ri =
bi0 and aij = bij − b0j.

The map ψ : Ŝn+1 → Rn
+ is given by

ψ(y) =
(

y1

y0
,
y2

y0
, . . . ,

yn

y0

)
,

whose inverse is

ψ−1(x) =
(

x0∑n
i=0 xi

,
x1∑n
i=0 xi

, . . . ,
xn∑n
i=0 xi

)
,

where x0 = 1. From these results, it is ensured that if the Lotka-Volterra equation
(1) has a constant of motion, then the replicator equation (2) does and vice versa.
In this paper, by using this property, we will obtain new constants of motion for
(1) and (2).

In Section 2, we review the known results on constants of motion for (1) and (2).
In Section 3, by using the results in Section 2, we obtain new constants of motion
and illustrates some examples, which include a predator-prey population dynamics
and a rock-scissors-paper game dynamics.

2. The Known Results on Constants of Motion

2.1. The Lotka-Volterra equations

In this subsection, we introduce a result of Volterra [4, 5], which gives a constant
of motion for the Lotka-Volterra equation (1) (see also Scudo and Ziegler [3] for a
re-edition of classic papers of Vito Volterra). Volterra [4, 5] obtained a constant
of motion under the assumption that the interaction matrix A can be transformed
into an anti-symmetric matrix in the following sense:

(H1) : There exists a diagonal matrix D = diag{d1, d2, . . . , dn}, di > 0, i =
1, 2, . . . , n such that DA is anti-symmetric, i.e., DA = −(DA)>.

This assumption implies that there are no intra-specific competition since aii = 0
for all i = 1, 2, . . . , n and all interactions between two species are of predator-prey
type since aijaji ≤ 0 for all i, j = 1, 2, . . . , n. Under this assumption, the Lotka-
Volterra equation (1) has a constant of motion as follows:
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Theorem 2.1 ([3], p.130, and [2], Exercise 15.3.7). Suppose that (H1) holds and
(1) has an interior equilibrium p = (p1, p2, . . . , pn) ∈ intRn

+. Then every solution
x(t) with x(0) ∈ intRn

+ satisfies

V1(x) :=
n∑

i=1

di(pi lnxi − xi) = C,

where C is a constant dependent of the initial value x(0).

2.2. The replicator equations

In this subsection, we introduce a constant of motion for the replicator equation
(2). It is well known that the replicator equation (2) has a constant of motion if an
interior equilibrium q ∈ intSn+1 exists and the payoff matrix B is anti-symmetric
(the game with an anti-symmetric payoff matrix is called a zero-sum game)(see Hof-
bauer and Sigmund [2], Exercise 7.4.3). This well-known result can be generalized
by using the following feature of the replicator equation (2):

• The application of the projective transformation y → z with

zi =
yi/mi∑n

j=0 yj/mj
, mj > 0,

transforms (2) into the replicator equation with the payoff matrix BM =
(aijmj) (see Hofbauer and Sigmund [2], Exercise 7.1.3).

By using this feature, we can show that the replicator equation (2) has a constant
of motion even if the payoff matrix B is not anti-symmetric but can be transformed
into an anti-symmetric matrix in the following sense:

(H2) : There exists a diagonal matrix M = diag{m0,m2, . . . , mn}, mi > 0,
i = 0, 1, . . . , n such that BM is anti-symmetric, i.e., BM = −(BM)>.

In fact, we have the following theorem:
Theorem 2.2. Suppose that (H2) holds and the replicator equation (2) has an
interior equilibrium q ∈ intSn+1. Then every solution y(t) with y(0) ∈ intSn+1

satisfies

P1(y) :=
n∏

i=0

(
yi/mi∑n

j=0 yj/mj

) qi/miPn
j=0 qj/mj

= C,

where C is a constant dependent of the initial value y(0).

Proof. Since q is an interior equilibrium of (2), we have

(3) (Bq)i − q ·Bq = 0, i = 0, 1, . . . , n.

If we multiply both sides of the equation by wi = (qi/mi)/
∑n

j=0(qj/mj) and sum
over i, then we have

w ·BMw
n∑

j=0

(qj/mj)− q ·Bq = 0,
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where w = (w0, w1, . . . , wn)>. Since BM is anti-symmetric, we have

w ·BMw = q ·Bq = 0

and (3) implies

(4) (BMw)0 = (BMw)1 = · · · = (BMw)n = w ·BMw = 0.

Hereafter, we show that Ṗ1 = 0 holds. Since P1 =
∏n

i=0 zwi
i , we have

Ṗ1 = P1

n∑

i=0

wi
1
zi

dzi

dt
.

Furthermore, since

żi = zi{(BMz)i − z ·BMz}(
n∑

j=0

yj/mj),

we have

Ṗ1 = P1

n∑

i=0

wi((BMz)i − z ·BMz)(
n∑

j=0

yj/mj)

= −P1

n∑

i=0

zi(BMw)i(
n∑

j=0

yj/mj) = 0,

where the anti-symmetry of BM and (4) are used. ¤

Remark: If (H2) holds, every diagonal element of the matrix B is zero. We
can assume it without loss of generality since the replicator equation (2) does not
change on Sn+1 even if we add a constant cj to the j-th column of B (see Hofbauer
and Sigmund [2], Exercise 7.1.2).

3. The Constants of Motion Derived from Topologically Equiv-
alent Equations

3.1. The Lotka-Volterra equations

In this subsection, by using Theorems 1.1 and 2.2, we obtain a new constant of
motion for the Lotka-Volterra equation (1). Since the Lotka-Volterra equation
(1) and the replicator equation (2) are equivalent, the constant of motion P1 for
the replicator equation (2) can be transformed into the one for the Lotka-Volterra
equation (1) through the map ψ. Therefore, the following theorem is an immediate
consequence of Theorems 1.1 and 2.2:
Theorem 3.1. Suppose that (H2) holds and the replicator equation (2) has an
interior equilibrium q ∈ intSn+1. Then the Lotka-Volterra equation (1) with ri = bi0



CONSTANTS OF MOTION FOR THE L-V AND REPLICATOR EQUATIONS 5

and aij = bij − b0j, i, j = 1, 2, . . . , n, has an interior equilibrium p ∈ intRn
+ and

every solution of (1) with x(0) ∈ intRn
+ satisfies

V2(x) :=
n∏

i=0

(
xi/mi∑n

j=0 xj/mj

) pi/miPn
j=0 pj/mj

= C,

where C is a constant dependent of the initial value x(0) and x0 = p0 = 1.
Example (the rock-scissors-paper game). Let us consider the replicator equa-
tion with the following payoff matrix:

(5) B =




0 −β1 b2

b0 0 −β2

−β0 b1 0


 ,

where bi, βi > 0, i = 1, 2, 3. The game with this payoff matrix is called the general
rock-scissors-paper game (see Hofbauer and Sigmund [2], §7.7). We can easily see
that the replicator equation (2) with (5) always has an interior equilibrium

q =
1
Σ

(b1b2 + b1β2 + β2β1, b2b0 + b2β0 + β0β2, b0b1 + b0β1 + β0β1),

where

Σ = β0β1 + β0β2 + β1β2 + β1b0 + β2b1 + b0b1 + β0b2 + b0b2 + b1b2 > 0.

It is known that every solution in intS3 of the replicator equation (2) with (5)
converges to q or the boundary of S3 if b0b1b2 6= β1β2β3 (see Hofbauer and Sigmund
[2], Theorem 7.7.2 and its proof). So, in order to obtain a constant of motion, we
assume the following

(H2)′ : β0β1β2 = b0b1b2 > 0 holds.
Then it is seen that BM = −(BM)> holds for the diagonal matrix

M = diag{1, b0/β1, (b0b1)/(β1β2)}.
Hence, by Theorem 2.2, we have a constant of motion P1 for the replicator equation.
Fig.1(b) illustrates this constant of motion for the case where bi = βi = 1, i = 0, 1, 2,
and then

P1(y) = y
1
3
1 y

1
3
2 y

1
3
3 .

By Theorem 3.1, under the assumption (H2)′, we can obtain a constant of motion
V2 for the following Lotka-Volterra equation{

ẋ1 = x1{b0 + β1x1 − (β2 + b2)x2},
ẋ2 = x2{−β0 + (β1 + b1)x1 − b2x2}.

The interaction matrix A is

A =
(

β1 −β2 − b2

β1 + b1 −b2

)

Note that this matrix does not satisfy the assumption (H1) since the diagonal
elements are not zero. Since the off-diagonal elements have opposite signs, the
interaction between species 1 and 2 is of predator-prey type (species 1 is a prey
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of species 2). However, notice that this equation is strange in the sense that the
intra-specific density effect for species 1 is positive, which means that the higher
the density of species 1 becomes, the more efficiently species 1 reproduces. Fig.1(a)
illustrates the constant of motion for this equation with βi = bi = 1, i = 0, 1, 2, and
then

V2(x) =
x

1
3
1 x

1
3
2

1 + x1 + x2
.
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Figure 1. (a), (b), (c) and (d) illustrate the constants of motion
V2, P1, V1 and P2, respectively.
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3.2. The replicator equations

In this subsection, by using Theorems 1.1 and 2.1, we obtain a new constant of
motion for the replicator equation (2). Since the Lotka-Volterra equation (1) and
the replicator equation (2) are equivalent, the constant of motion V1 for the Lotka-
Volterra equation (1) can be transformed into the one for the replicator equation
(2) through the map ψ−1. Therefore, the following theorem is an immediate con-
sequence of Theorems 1.1 and 2.1:
Theorem 3.2. Suppose that (H1) holds and the Lotka-Volterra equation (1) has
an interior equilibrium p ∈ intRn. Then the replicator equation (1) with b0j = 0,
bi0 = ri, bij = aij, i, j = 1, 2, . . . , n has an interior equilibrium q ∈ intSn+1 and
every solution of (2) with y(0) ∈ intSn+1 satisfies

P2(y) :=
n∑

i=1

di

(
qi

q0
ln

yi

y0
− yi

y0

)
= C,

where C is a constant dependent of the initial value y(0).
Example (the predator-prey model). Let us consider the following classic
Lotka-Volterra equation for predator-prey type interaction:

(6)
{

ẋ1 = x1(r1 − a12x2),
ẋ2 = x2(−r2 + a21x1),

where x1 and x2 denote the population densities of prey and predator species,
respectively, and r1, r2, a12 and a21 are positive. This equation has an interior
equilibrium p = (r2/a21, r1/a12). It is seen that DA = −(DA)> holds for the
diagonal matrix

D = diag{a21, a12}.
Hence, by Theorem 2.1, this Lotka-Volterra equation has a constant of motion V1.
Fig.1(c) illustrates this constant of motion for the case where a12 = a21 = 1 and
r1 = r2 = 1, and then

V1(x) = ln(x1x2)− x1 − x2.

By Theorem 3.2, we can obtain a constant of motion P2 for the replicator equa-
tion (2) with the following payoff matrix

B =




0 0 0
r1 0 −a12

−r2 a21 0


 .

Note that the game with this payoff matrix is not a zero-sum game and does not
satisfy the assumption (H2). However, by Theorem 3.2, we can construct a constant
of motion P2.

Fig.1(d) illustrates the constant of motion P2 for the case where a12 = a21 = 1
and r1 = r2 = 1, and then

P2(y) = ln
y1y2

y2
0

− y1

y0
− y2

y0
.



8 RYUSUKE KON

4. Discussion

In this paper, by using the topological equivalence between the Lotka-Volterra and
replicator equations, we obtained new constants of motion for these equations (The-
orems 3.1 and 3.2). As illustrations, we gave two examples. In the first example,
we investigated the Lotka-Volterra equation that is associated with the replicator
equation for the rock-scissors-paper game by the map ψ. This investigation showed
that the Lotka-Volterra equation of predator-prey type can have a constant of mo-
tion even if the intra-specific density dependence is present in both populations
(cf. Eq.(6)) though it involves a strange property in the sense that the population
density of the prey accelerates the increase of itself. In the second example, we in-
vestigated the replicator equation that is associated with the classic Lotka-Volterra
equation of predator-prey type, i.e., Eq.(6). This investigation showed that the
replicator equation for the rock-scissors-paper game (i.e., Eq.(2) with (5)) can have
a constant of motion even if β0β1β2 = b0b1b2 = 0.
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