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Abstract

This paper considers the dynamics of a two-dimensional discrete-time model for host–parasitoid inter-
actions, and shows that the model has two attractors: the fixed point where two species coexist and a
boundary cycle where the parasitoid is absent. The analysis with the Liapunov exponent confirms that this
kind of bistability is common in this model. The generality of this phenomenon in host–parasitoid interac-
tions is also discussed.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It is known that host–parasitoid interactions are very popular in the insect world. According to
Hassell [13], parasitoids comprise about 10% or more of all metazoan species, and few insect
species escape the attack of parasitoids (see also Godfray [8], Section 1.4). Therefore, to focus
on the interaction between hosts and parasitoids is important to uncover the mechanism which
promotes species diversity.
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The classical framework for discrete-time host–parasitoid models is given by
H tþ1 ¼ kHtf ½P t�;
P tþ1 ¼ bHtð1� f ½P t�Þ;

�
ð1Þ
where Ht and Pt are the population densities of hosts and parasitoids, respectively. The
parameters k > 1 and b > 0 denote the number of offspring of hosts in the absence of parasitoids
and the number of parasitoids emerging from each host parasitized, respectively. The function f
defines the fraction of hosts escaping parasitism. Therefore, 1 � f defines the fraction of hosts
parasitized.

System (1) with f[P] = exp[�aP] is called the Nicholson–Bailey model. The parameter a > 0 rep-
resents the per capita searching efficiency of parasitoids. The Nicholson–Bailey model has a
positive fixed point (H*, P*), H* > 0 and P* > 0, on which point two species can coexist as long
as the initial condition satisfies (H0, P0) = (H*, P*). However, it is well known that this fixed point
is never stable, and the slightest perturbation leads to divergent oscillations. Since this instability
disagrees with the fact that many hosts and parasitoids coexist in nature, a great effort has been
made to find mechanisms which stabilize this positive fixed point.

One of such mechanisms is the density dependence in host populations (see Hassell [13] for
other mechanisms which stabilize host–parasitoid interactions). The following model was pro-
posed by Beddington et al. [3] as a host–parasitoid model with density dependence in a host
population:
H tþ1 ¼ kHt exp½�lHt� exp½�aP t�;
P tþ1 ¼ bHtð1� exp½�aP t�Þ;

�
ð2Þ
where the newly introduced parameter l > 0 denotes the intensity of intra-specific competition in
a host population. Beddington et al. [3] showed that the inclusion of the host density dependence
stabilizes the Nicholson–Bailey model, i.e., System (2) can have a stable positive fixed point. They
also illustrated that the destabilization of the positive fixed point leads to quasi periodic and
chaotic orbits (see also Gumowski and Mira [11] for the structure of positive attractors of (2)).

These results were obtained by addressing the dynamics in the interior of the non-negative cone
(denoted by R2

þ), especially the bifurcation of a positive fixed point. In contrast with these studies,
there are some studies focusing on the dynamics on the boundary of R2

þ. For example, Hadeler
and Gerstmann [12] examined the dynamics of the discrete-time predator-prey model called the
discrete-time Rosenzweig model. They showed that there are two attractors: the first is a positive
fixed point where both species coexist, and the second is a cycle (or periodic orbit) where the pred-
ator is absent. Moreover, Neubert and Kot [30] found the similar phenomenon in other models
(see also the recent works by Kon [19,21] and Greenman and Benton [9]). These results imply that
whether or not two species coexist could depend on their initial population densities. In this paper,
we focus on the boundary orbits (in particular 2-, 4- and 8-cycles) of System (2), and with the help
of numerical simulations we study how often such kinds of multiple attractors are observed in
System (2).

The remainder of this paper is organized as follows. In Section 2, we review some known results
addressing the stability of fixed points of (2) (see also [3,7,17,28]). In Section 3, we address the
boundary cycles (2-, 4- and 8-cycles) of (2) and examine their stability. The result of this stability
analysis is used, in Section 4, to consider the existence of multiple attractors. By introducing the
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Liapunov exponent, Section 4 also considers the attractivity of boundary aperiodic orbits. Most
of these analyses in Sections 3 and 4 are carried out numerically. The final section includes
discussion.
2. Fixed points and their stability

We introduce the new variables xt = lHt and yt = aPt and the new parameters r = logk > 0 and
h = ab/l > 0, which lead to the following rescaled equation:
xtþ1 ¼ xt exp½r � xt � yt�;
ytþ1 ¼ hxtð1� exp½�yt�Þ.

�
ð3Þ
In the rest of this section, we present the known results concerning the existence and stability of
fixed points of this rescaled system.

System (3) has at most three fixed points: E00 = (0,0), E+0 = (r, 0) and E++ = (x*,y*), which is
derived as a unique positive root of the following equations:
r ¼ x� þ y�;

x� ¼ y�=fhð1� exp½�y��Þg.

�

Fig. 1 illustrates the disposition of these fixed points. The fixed points E00 and E+0 always exist,
and E++ exists if and only if hr > 1 (e.g., see Kon and Takeuchi [17]). Therefore, the r � (1/h)
parameter plane is divided into two regions depending on the existence of the fixed point E+0

(see Fig. 2). Kon and Takeuchi [20] showed that if hr < 1 holds, then limt!1Pt = 0 for every
ðH 0; P 0Þ 2 R2

þ. Therefore, except the critical case hr = 1, we see that if E++ does not exist, then
the parasitoid goes extinct.

The local stability conditions of the fixed points are given by using the Schur–Cohn or Jury
criteria (e.g., see May [24] and Kocic and Ladas [16] for the Schur–Cohn criterion and Murray
[28] and Caswell [4] for the Jury criterion). These criteria show that E00 is always unstable, and
the stability of E+0 and E++ depends on the parameter values. In Fig. 2, the r � (1/h) parameter
plane demarcated with the stability of these fixed points is shown. Furthermore, the schematic
phase portraits of (3) are given for each parameter region. E+0 is stable if r < 2 and hr < 1.
E++ is stable in the gray region of Fig. 2. On the boundaries T, H and F in Fig. 2, transcritical,
Fig. 1. The x–y phase plane. The dots and lines represent fixed points and null clines of (3), respectively.
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Fig. 2. The r–(1/h) parameter plane demarcated with stability of E+0 and E++. E+0 is stable if r < 2 and hr < 1. The
internal and transversal stabilities of E+0 change on the lines r = 2 and hr = 1, respectively. E++ is stable in the gray
region. In the schematic phase portraits, the white and black dots represent stable and unstable fixed points,
respectively.
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Naimark–Sacker (discrete-Hopf) and flip bifurcations of E++ occur, respectively (see Neubert and
Kot [30] and Kot [22]). On the boundary T, E++ emerges from E+0. There is an exchange of stability
between E+0 and E++. Below H, we observe an unstable focus E++ and an attracting invariant circle
surrounding E++. In fact, bifurcation theory confirms numerically that this Naimark–Sacker bifur-
cation is always supercritical (see Guckenheimer and Holmes [10], Section 3.5 for details). On the
boundary F, the destabilization of E++ gives rise to a 2-cycle. It is known that this 2-cycle is unstable,
i.e., the flip bifurcation is subcritical (see Neubert and Kot [30] and Kot [22]).
3. Boundary cycles

In this section, we focus on cycles on the boundary of the non-negative cone R2
þ, which is com-

posed of the x- and y-axes. From Eq. (3), we can easily see that these axes are invariant, i.e., every
orbit on the x- and y-axes does not leave the respective axes.

It is clear that on the y-axis there are no cycles except the origin E00. In fact, we see that every
orbit on the y-axis is mapped to the origin by one iteration. In contrast to such simple dynamics,
the dynamics on the x-axis is much more complicated. From Eq. (3), we see that the dynamics on
the x-axis is governed by the following map:
xtþ1 ¼ xt exp½r � xt�. ð4Þ

This map is called the Ricker map and its dynamics is extensively studied by many authors (e.g.,
see May [25] and May and Oster [27] for the studies of the Ricker map, and de Melo and van
Strien [6], Thunberg [31] and Avila et al. [2] for the studies of a unimodal map with negative
Schwarzian derivative, which includes the Ricker map as a special case). Fig. 3 is a bifurcation
diagram of this map. Fig. 3(a) captures stable cycles and (b) captures some cycles (2-, 4- and 8-
cycles) irrespective of their stability, which are originated from the positive fixed point x = r



Fig. 3. The bifurcation diagrams of (4): (a) the orbits for t = 1000–1200 are plotted. This diagram shows attractive
orbits, (b) the fixed point x = r and 2-, 4- and 8-cycles are plotted.

176 R. Kon / Mathematical Biosciences 201 (2006) 172–183
(see Appendix A of Mylius and Diekmann [29] for analytical expression of the 2-cycle). These
cycles are embedded in the x-axis of System (3).

Let fðpt; 0Þg
m
t¼1 be an m-cycle on the x-axis. The stability conditions of fðpt; 0Þg

m
t¼1 are given by

using the Schur–Cohn or Jury criteria. These criteria show that fðpt; 0Þg
m
t¼1 is stable if
Ym
t¼1

ð1� ptÞ exp½r � pt�
�����

����� < 1 and
Ym

t¼1

hpt < 1;
hold (e.g., see Kon and Takeuchi [18]). Note that the first inequality is identical to the stability
condition of a cycle fptg

m
t¼1 of the Ricker map (4), i.e., the so-called internal stability. Whether

or not this inequality holds can be numerically evaluated by using the bifurcation diagram in
Fig. 3(a). For example, the first inequality holds for a 2-cycle (resp. 4-cycle) when
2 < r < 2.526 � � � (resp. 2.526 � � � < r < 2.692� � �) (see also May [25]). The second inequality deter-
mines the so-called transversal stability. If the inequality

Qm
t¼1hpt 6 1 holds, then the cycle

fðpt; 0Þg
m
t¼1 is said to be saturated, otherwise unsaturated. The saturation of the boundary cycle

implies that the system is stable against parasitoid invasion evaluated at the cycle.
In Fig. 4, the boundaries of transversal stability of the fixed point E+0 (1-cycle) and the 2-, 4-

and 8-cycles on the x-axis are superimposed over the r � (1/h) parameter plane demarcated with
stability of the positive fixed point E++. The boundary of transversal stability of the fixed point
E+0 is the line 1/h = r, below which E+0 is transversally unstable (unsaturated). This instability
leads to the positive fixed point E++ due to transcritical bifurcation (e.g., see Caswell [4] and Neu-
bert and Kot [30]). Similarly, below the boundaries of transversal stability of 2-, 4- and 8-cycles,
the respective cycles are transversally unstable (unsaturated). These instabilities also lead to posi-
tive cycles (i.e., cycles in the interior of R2

þ) due to transcritical bifurcation (see Neubert and Kot
[30] and Kot [22] for schematic phase portraits illustrating such bifurcations of boundary cycles).

As mentioned in Section 2, every positive orbit converges to the x-axis if the fixed point E+0 is
strictly saturated in the sense that hr < 1 holds. This suggests that every cycle on the x-axis is sat-
urated as long as the fixed point is strictly saturated. This assertion can easily be confirmed by
using the property of the Ricker map that the time average of cycles is identical to the positive
fixed point, i.e., every cycle fptg

m
t¼1 of (4) satisfies

Pm
t¼1pt=m ¼ r (e.g., see Hofbauer et al. [14]).

Therefore, the relationship between arithmetic and geometric means leads to
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Fig. 4. The r–(1/h) parameter plane. The boundaries of transversal stability of cycles (1-, 2-, 4- and 8-cycles, which are
shown in Fig. 3(b)) on the x-axis are plotted. Above these boundaries, the associated cycles are saturated. Above the
curve labeled ‘Liapunov exponent’, s(x0) < 0 holds and the x-axis has an attractor whose basin has positive two-
dimensional Lebesgue measure. Below this curve, the x-axis does not have such an attractor, but may attract some
positive orbit. Below the dot-dashed curve labeled ‘permanence’, the x-axis does not attract any positive orbits. Since
this curve is just a boundary of a sufficient condition for permanence, above this curve the x-axis need not always attract
a positive orbit.
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Ym
t¼1

hpt

 !1=m

6
1

m

Xm

t¼1

hpt ¼ hr.
This implies that if E+0 is strictly saturated, then all other cycles are also strictly saturated. In fact,
Fig. 4 shows that the boundaries of transversal stability of 2-, 4- and 8-cycles are always below
that of E+0. At the present, we do not know the general rule determining the relative disposition
between the transversal stability boundaries of cycles with period n P 2. However, it is very inter-
esting to reveal such a rule since it determines in what order the boundary cycles become unsat-
urated. We leave this problem as a future work.
4. Multiple attractors

Fig. 5 contains the magnified picture of Fig. 4. In Fig. 5, the schematic phase portraits in the
neighborhood of the x-axis are also shown. From Fig. 5, we see that both the boundary cycles
(2-, 4- and 8-cycles) and the positive fixed point E++ can be stable simultaneously. At the point
(a) (resp. (b)) in Fig. 5, both the boundary 2-cycle (resp. 4-cycle) and the positive fixed point
E++ are stable. At the point (c), no boundary cycles are stable. But there exists an orbit converg-
ing to the boundary 2-cycle since it is a saddle with a stable manifold that intersects the interior of
R2
þ (every orbit starting on the stable manifold converges to the 2-cycle).
The following Liapunov exponent estimates the existence of attractors on the x-axis:
sðx0Þ :¼ lim
T!1

1

T

XT�1

t¼0

lnðhxtÞ;
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Fig. 5. The magnified r–(1/h) parameter plane. The schematic phase portraits in the neighborhood of the x-axis are
shown for the points labeled (a), (b) and (c).

Fig. 6. Basins of attraction of System (3). The range of the figure is 0 6 x 6 8, 0 6 y 6 1. The black points are attracted
to an attractor on the x-axis, and the white points are attracted to the positive fixed point E++ = (1.908,1.342). The
parameters are r = 3.25 and h = 1/1.05. The horizontal and orthogonal Liapunov exponents evaluated at the attractor
on the x-axis are 0.391 and �0.105 (= s(x0)), respectively.
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where {xt} is a solution of (4). Note that the limit s(x0) need not exist nor be independent of initial
condition. However, it is known that the Ricker map has at most one attractive cycle, and if it
exists, then for almost every initial condition the limit s(x0) exists and is independent of the initial
condition. Moreover, even if an attractive cycle does not exist, both the existence and uniqueness
of the limit s(x0) are ensured for almost every initial condition if the Ricker map has an absolutely
continuous invariant measure (a.c.i.m.) (see de Melo and van Strien [6], Chapter V). It is known
that a unimodal map with negative Schwarzian derivative (S-unimodal map), which includes
the Ricker map, has these properties (see de Melo and van Strien [6] and Thunberg [31] for the
studies of a S-unimodal map and Avila et al. [2] for its recent progress).
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Fig. 7. The temporal fluctuation of population densities of (3). The solid and dashed lines represent population
densities of hosts and parasitoids, respectively. (a) The parameter set is (r, 1/h) = (3.14,1.4). The initial conditions are
(x0,y0) = (3.0,1.0) for (a-i) and (8.0,0.4) for (a-ii). (b) The parameter set is (r, 1/h) = (3.14,0.9). The initial conditions
are (x0,y0) = (3.0,1.0) for (b-i) and (8.0,0.4) for (b-ii).
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If s(x0) < 0, then the Liapunov exponent estimates that System (3) has an attractor on the
x-axis. More precisely, if the Ricker map has an attractive cycle, then s(x0) < 0 implies that
every point in some neighborhood of the boundary cycle of (3) converges to it. If the Ricker
map has an a.c.i.m., then s(x0) < 0 implies that the x-axis has an attractor whose basin has
positive 2-dimensional Lebesgue measure. However it is known that the basin of attraction
could be riddled, i.e., it could contain no disks. Indeed a point chosen at random from any disk
could have positive probability of not being in the basin of attraction. We can find a mathemat-
ically rigorous example of riddled basins of attraction in Alexander et al. [1] (see also de
Feo and Ferriere [5]). Fig. 6 illustrates the riddled basin of attraction for our host–parasitoid
model.

In Fig. 4, the boundary s(x0) = 0 is superimposed over the r � (1/h) parameter plane. In this
figure, the Liapunov exponent is evaluated by the attractive orbits displayed in Fig. 3(a). These
analyses with the Liapunov exponent show that bistability is frequently observed, in particular
for large r. If r is around 3.14, where the host dynamics has an attractive 3-cycle, then the positive
fixed point E++ is never a unique attractor. From Fig. 4, we see that as r increases (i.e., the host
dynamics becomes complex), System (3) tends to have multiple attractors. Fig. 7(a) and (b) illus-
trate the bistable dynamics of (3) with the parameters (r, 1/h) = (3.14,1.4) and (3.14,0.9), respec-
tively. Although both parameter sets are located above the Liapunov exponent curve in Fig. 4, the
parameter set (3.14,1.4) is in the gray region and (3.14,0.9) is outside of the gray region of Fig. 4.
Fig. 7(a) shows that a solution around the positive fixed point converges to it and a solution
around the x-axis converges to the boundary 3-cycle. Fig. 7(b) shows that both the boundary
3-cycle and the positive aperiodic orbit are attractive.
5. Discussion

In this paper, we investigated the dynamics of the specific host–parasitoid model (3) (or (2))
proposed by Beddington et al. [3]. Our investigations confirmed that this model has multiple
attractors: the positive fixed point where both species coexist and the boundary cycle where the
parasitoid is absent. Furthermore, the analysis with the Liapunov exponent showed that this type
of coexistence of attractors is often found in System (3), in particular for large r. This result insists
that it is very important to know the global behavior of systems when we consider coexistence of
species.

System (3) is said to be permanent if there exist positive constants d > 0 and D > 0 such that
d < liminft!1xt 6 limsupt!1xt < D and d < liminft!1yt 6 limsupt!1yt < D for all x0 > 0 and
y0 > 0. We see that permanence implies coexistence of hosts and parasitoids. If System (3) is per-
manent, then as long as the initial population densities are positive there are no possibilities that
the parasitoid goes extinct. In Fig. 4, the region where System (3) is permanent is shown (see Kon
and Takeuchi [18] for the explicit expression of this region). Since this region only provides the
sufficient condition for permanence of (3), we do not know whether or not this system is perma-
nent outside the region. However, it is ensured that above the line labeled ‘2-cycle’, System (3) is
not permanent since the stable manifold of the 2-cycle on the x-axis intersects with the interior of
R2
þ. To obtain a necessary and sufficient condition for permanence of (3) is an important future

work.
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Let us consider the generality of the bistable dynamics observed in the specific host–parasitoid
system (2). System (2) can be generalized as follows:
H tþ1 ¼ kHtg½H t�f ½P t�;
P tþ1 ¼ bHtð1� f ½P t�Þ;

�
ð5Þ
where g[H] and f[P] are strictly decreasing functions and satisfy the following equations:
g
ln k
l

� �
¼ 1

k
and

of
oP

����
P!þ0

¼ �a.
System (5) is reduced to (2) if g[H] = exp[�lH] and f[P] = exp[�aP]. Let fðpt; 0Þg
m
t¼1 be an m-cycle

on the H-axis. It is straightforward to show that the cycle is transversally stable if
Ym
t¼1

bpt
1� f ½P �

P

����
P!þ0

� �
¼
Ym

t¼1

abpt < 1.
We see that this condition is similar to that of System (2) (see the transversal stability condition of
the rescaled system (3) in Section 3). If the host dynamics obeys the Ricker map, i.e.,
g[H] = exp[�lH], then the transversal stability condition is completely identical to that of System
(2) irrespective of the form of the function f, and has the same picture in the r � (1/h) parameter
plane of Fig. 4 after the rescaling xt = lHt, yt = aPt, r = lnk and h = ab/l. Therefore, in this case,
if the generalized system has a positive stable fixed point in a wide area of the r � (1/h) parameter
plane, then the system has multiple attractors composed of a positive fixed point and a boundary
cycle on the H-axis. For example, if g[H] = exp[�lH] and f[P] = (1 + aP/k)�k, then System (5)
has a stable fixed point in the wider range of parameter space than System (2) (see Lane et al.
[23] and Hassell [13]). Although we need further investigations, the generalized system (5) seems
to have the bistable dynamics if the host dynamics exhibits complex behavior due to overcompen-
satory dynamics like the Ricker map.

System (5) can be further generalized by replacing f[P] with f[H,P]. An example model included
in such a general framework is found in Kaitala et al. [15]. They showed that the model has several
attractors simultaneously in the interior of R2

þ. Therefore, the model seems to have a stable po-
sitive fixed point together with a local attractor on the host axis. It is a future work to investigate
such bistable dynamics of System (5) with f[H,P] instead of f[P]. It is also interesting to examine
the dynamics of host–parasitoid models with the framework differing from (5). For example, it is
known that the order of the events in host’s life cycle leads to the different framework and is influ-
ential in the dynamics of host–parasitoid interactions (see Wang and Gutierrez [32], May et al.
[26] and Kon [19]).
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