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CONVEX DOMINATES CONCAVE:
AN EXCLUSION PRINCIPLE IN DISCRETE-TIME

KOLMOGOROV SYSTEMS

RYUSUKE KON

(Communicated by Carmen C. Chicone)

Abstract. We establish an exclusion principle in discrete-time Kolmogorov
systems by using average Liapunov functions. The exclusion principle shows
that a weakly dominant species with a convex logarithmic growth rate func-
tion eliminates species with concave logarithmic growth rate functions. A
general result is applied to specific population models. This application gives
an improved exclusion principle for the specific population models.

1. Introduction

In this paper, we study population models governed by difference equations. One
of the most popular types of such population models has the following form:

(1.1) xi(t + 1) = xi(t)gi(x(t)), i = 1, . . . , n.

This type of population model is called Kolmogorov type. The valuable xi(t) rep-
resents a population density of species i at time t, and x(t) is a vector of population
densities x(t) = (x1(t), . . . , xn(t))�. We focus on the solutions of (1.1) in the non-
negative cone R

n
+ := {x ∈ R

n : x1 ≥ 0, . . . , xn ≥ 0}. The function gi is a growth
rate of species i, which depends on the vector of population densities x(t). Depend-
ing on the properties of the functions gi, system (1.1) can represent several kinds of
species interactions, e.g., competitive, cooperative and predator-prey interactions
(if gi and gj are decreasing (resp. increasing) functions in xj and xi, respectively,
then species i and j are in competition (resp. cooperation) with each other, and if
gi is increasing in xj and gj is decreasing in xi, then the interaction between species
i and j is a predator-prey (species i is a predator and j is a prey)).

From several points of view, the dynamics of system (1.1) have been investigated.
For example, in [9, 11, 13, 14, 15], criteria which ensure species coexistence in the
sense of permanence are studied. In contrast with these studies, Franke and Yakubu
[4, 5, 6, 7] obtained several criteria which ensure that some species is dominant in
the system, i.e., the species eliminates other species from the system irrespective of
the initial population densities. More precisely, dominance is defined as follows.
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Definition 1.1. The species k is said to be dominant if limt→∞ xi(t) = 0, i ∈
{1, . . . , n}\k, for every x(0) ∈ R

n
+ with xk(0) > 0.

We call the criteria which ensure dominance of some species an exclusion prin-
ciple. From the definition of dominance, it is clear that coexistence of n species in
system (1.1) is impossible if there is a dominant species. Therefore, non-existence
of dominant species is necessary for coexistence of n species in system (1.1). From
the point of view of evolutionary biology, an exclusion principle is also important
to evaluate the possibility that a successfully invading mutant species replaces a
resident species (e.g., see Geritz et al. [8]).

The purpose of this paper is to provide a new result on dominance in system
(1.1), which is not only deduced from the earlier results [4, 6, 7]. In the studies of
dominance, the following concept of weak dominance is important:

Definition 1.2. The species k is said to be weakly dominant if the two subsets D−
k

and
⋃

i∈{1,...,n}\k D+
i of R

n
+ are disjoint, where D+

i := {x ∈ R
n
+ : gi(x) ≥ 1} and

D−
i := {x ∈ R

n
+ : gi(x) ≤ 1}.

From the definition of D+
i and D−

i , the population density of species i is non-
decreasing and non-increasing in D+

i and D−
i , respectively. The intersection D+

i ∩
D−

i represents a null cline in the sense that xi(t+1)−xi(t) is zero if x(t) ∈ D+
i ∩D−

i .
Thus, on the null cline D+

i ∩D−
i , the population density of species i remains constant

in one unit of time. A point x ∈
⋂n

i=1(D
+
i ∩D−

i ) is a candidate for a positive fixed
point, which is a fixed point in the interior of R

n
+. Therefore, if a weakly dominant

species exists, system (1.1) does not possess a positive fixed point. This implies
that n species cannot coexist at a fixed point. It is known that if all growth rate
functions gi have exponential form, then weak dominance implies dominance (see
[1, 5]). However, it is also known that, in general, weak dominance does not always
imply dominance. For example, in [4, 5, 6, 7, 17], it is shown, by using specific
examples of (1.1) with n = 2, that stable periodic solutions can exist in the interior
of R

2
+ even if there is a weakly dominant species. Moreover, coexistence with chaotic

oscillation is also possible under the assumption of weak dominance (see [16, 17]).
These facts lead to an interesting problem of finding an additional condition that
ensures that weak dominance implies dominance.

After the next preliminary section, we consider this problem and obtain such
an additional assumption (Theorem 3.2). Our result shows that if the logarithmic
growth rate function ln gk is convex and all other functions ln gi, i ∈ {1, . . . , n}\k,
are concave, then weak dominance of species k implies its dominance. In Section
4, we apply our result to specific population models, in which each growth rate
function gi is a function of the weighted total population density

∑n
j=1 aijxj(t).

The final section discusses the differences between our result and the earlier ones by
Franke and Yakubu [4, 6, 7]. We will see that there is no inclusion relation between
them. But, we will also see that our result has an advantage in its application to
specific models.

2. Preliminaries

In this section, we introduce some notations and theorems, which are used in
the following sections.

Let (X, d) be a metric space with metric d. A map f : X → X defines a
discrete semi-dynamical system π : Z+ × X → X by π(t, x) = f t(x), where Z+ :=
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{0, 1, 2, . . .} and f t(x) denotes the t-th iterate of x under f . Throughout this
section, we assume that f : X → X is continuous. Let ω(x) be the omega limit set
of x and let γ+(x) be the semi-orbit through x, i.e., ω(x) := {y ∈ X : f tj (x) →
y for some subsequence tj → ∞} and γ+(x) := {y ∈ X : y = f t(x) for t ∈ Z+}.
For a subset N of X, we define ω(N) :=

⋃
x∈N ω(x) and γ+(N) :=

⋃
x∈N γ+(x). N

is said to be forward invariant if f(N) ⊂ N . For subsets N and Y of X, N is said
to be absorbing for Y if it is forward invariant and γ+(x)∩N �= ∅ for every x ∈ Y .

The following lemma is used to construct a compact absorbing set of system
(1.1) in Section 4 (see also Hofbauer et al. [9], Lemma 2.1).

Lemma 2.1 (Hutson [12], Lemma 2.1). Let Y ⊂ X be open, and let N be open
with a compact closure N ⊂ Y . Assume that Y is forward invariant and that
γ+(x) ∩ N �= ∅ for every x ∈ Y . Then M = γ+(N) is a compact absorbing set for
Y .

Now we introduce theorems of average Liapunov functions. In the next section,
the following two theorems are used to show that the extinction state of some
species is repelling or attracting, respectively.

Theorem 2.2 (Hutson [12], Theorem 2.2). Assume that X is compact and that S
is a compact subset of X with empty interior. Suppose that there is a continuous
function P : X → R+ which satisfies the following conditions:

(a) P (x) = 0 ⇐⇒ x ∈ S,

(b) sup
T≥0

lim inf
y→x

y∈X\S

P (fT (y))
P (y)

> 1 (x ∈ S).

Then there is a compact absorbing set M for X\S with M ∩ S = ∅.

Theorem 2.3 (Kon and Takeuchi [14], Lemma 14). Let X and S be the same as
those in Theorem 2.2. Suppose that there is a continuous function P : X → R+

which satisfies the following conditions:
(a) P (x) = 0 ⇐⇒ x ∈ S,

(b) inf
T≥0

lim sup
y→x

y∈X\S

P (fT (y))
P (y)

< 1 (x ∈ S),

(c) inf
T≥0

P (fT (x))
P (x)

< 1 (x ∈ X\S).

Then ω(X) ⊂ S, i.e., all solutions in X converge to S as t → ∞.

3. Main results

In this section, we obtain the main theorem (Theorem 3.2) of exclusion principles
for system (1.1) by using the theorems in the pervious section.

Since system (1.1) represents population dynamics, we are only interested in its
orbits restricted in the non-negative cone R

n
+. In order that population densities

do not become negative and species do not go extinct in finite time, we introduce
the following assumption:

(H): gi : R
n
+ → R+ is positive and continuous for each i = 1, . . . , n.

We see that if assumption (H) holds, then both R
n
+ and its interior, intRn

+,
are forward invariant under system (1.1), and the map f : R

n
+ → R

n
+ defined by

f = (x1g1, . . . , xngn)� is continuous.
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Define Si := {x ∈ R
n
+ : xi = 0}, which is the set of the state where species

i is extinct. Denote
⋂n

i=1 Si by O, which is the set consisting only of the origin.
From the equation form of system (1.1), it is clear that each Si is forward invariant.
Therefore, every union and every intersection of Si is also forward invariant.

We define the limit set of time average of solutions as follows (see [10]):

µ(x) := {y ∈ R
n
+ : lim

j→∞

1
tj

tj−1∑
t=0

x(t) = y for some sequence tj → ∞},

where x(t) is a solution of system (1.1) with x(0) = x. In the following lemma,
we obtain the conditions that µ(x) must satisfy under the assumption that ln gi is
convex or concave:

Lemma 3.1. Let M ⊂ R
n
+ be convex, and let X ⊂ R

n
+ be compact with X ⊂ M ⊂

R
n
+. Assume that (H) holds. Suppose that X is forward invariant under (1.1). If

ω(x) ∩ (X\Si) �= ∅ for some x ∈ X, then
(i) µ(x) ∩ D+

i �= ∅ if ln gi is concave on M ,
(ii) µ(x) ∩ D−

i �= ∅ if ln gi is convex on M .

Proof. Let x(t) = (x1(t), . . . , xn(t)) be a solution of (1.1) with x(0) = x. From
(1.1), we have

xi(T )
xi(0)

=
xi(T )

xi(T − 1)
xi(T − 1)
xi(T − 2)

. . .
xi(1)
xi(0)

=
T−1∏
t=0

gi(x(t)),

ln xi(T ) − ln xi(0)
T

=
1
T

T−1∑
t=0

ln gi(x(t)).

The assumption ω(x) ∩ (X\Si) �= ∅ implies that there exist a sequence Tj → ∞
and a δ > 0 such that xi(Tj) ≥ δ for all j ∈ Z+. By the compactness of X and the
existence of δ, we have

0 = lim
j→∞

1
Tj

Tj−1∑
t=0

ln gi(x(t)).

For the case (i), we can apply Jensen’s inequality to the concave function ln gi as
follows:

1
Tj

Tj−1∑
t=0

ln gi(x(t)) ≤ ln gi(
1
Tj

Tj−1∑
t=0

x(t)).

Then there exists a subsequence, again denoted by Tj → ∞, such that

0 ≤ ln gi( lim
j→∞

1
Tj

Tj−1∑
t=0

x(t)).

This implies that µ(x) ∩ D+
i �= ∅. Similarly, we can prove case (ii). �

The following theorem is the main theorem of this paper, and it gives testable
exclusion principles for specific population models (see the next section).

Theorem 3.2. Let M and X be the same as those in Lemma 3.1, and let X+
i =

D+
i ∩X and X−

i = D−
i ∩X. Assume that (H) holds and X∩O = ∅. Suppose that the

function ln gk is convex and the functions ln gi, i ∈ {1, . . . , n}\k, are concave on M .
If X−

k and
⋃

i∈{1,...,n}\k X+
i are disjoint, then ω(X\Sk) ⊂ (

⋂
i∈{1,...,n}\k Si)\Sk.
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Proof. Without loss of generality, we assume k = 1. By using Theorem 2.2, we
shall show that there exists a compact absorbing set X ′ ⊂ X\S1 for X\S1. Define
P1 : X → R+ as P1(x) = x1. It is clear that P1(x) = 0 if and only if x ∈ S1 ∩ X,
i.e., condition (a) of Theorem 2.2 holds. Let us check condition (b) of Theorem 2.2.
For every x ∈ S1 ∩ X we have

σ1(x) = sup
T≥0

lim inf
y→x

y∈X\S1

P1(fT (y))
P1(y)

= sup
T≥0

lim inf
y→x

y∈X\S1

y1(T )
y1(T − 1)

· · · y1(2)
y1(1)

y1(1)
y1(0)

,

where y(t) = (y1(t), . . . , yn(t)) is a solution of (1.1) with y(0) = y. By using the
continuity of f , we have

σ1(x) = sup
T≥0

T−1∏
t=0

g1(x(t)) = sup
T≥0

(
exp

[
1
T

T−1∑
t=0

ln g1(x(t))

])T

,

where x(t) is a solution of (1.1) with x(0) = x. Since the function ln g1 is convex
on M , Jensen’s inequality implies

1
T

T−1∑
t=0

ln g1(x(t)) ≥ ln g1(
1
T

T−1∑
t=0

x(t)).

Since X ∩ O = ∅, for every x ∈ S1 ∩ X there exists an i ∈ {2, . . . , n} such that
ω(x) ∩ (X\Si) �= ∅. Then it follows from Lemma 3.1 that for every x ∈ S1 ∩ X
there exists an i ∈ {2, . . . , n} such that µ(x) ∩ D+

i �= ∅ holds. By the assumption
X−

1 ∩ (
⋃n

i=2 X+
i ) = ∅, we see that for every x ∈ S1 ∩ X there exists a sequence

Tj → ∞ such that ln g1(
∑Tj−1

t=0 x(t)/Tj) > 0 for a sufficiently large j ∈ Z+. This
implies that σ1(x) > 1 for every x ∈ S1 ∩ X. Hence, by Theorem 2.2, we see that
there exists a compact absorbing set X ′ ⊂ X\S1 for X\S1.

By using Theorem 2.3, we shall show that every solution with the initial condition
x ∈ X ′ converges to the intersection of S′

i := Si ∩ X ′, i = 2, . . . , n, i.e., ω(X ′) ⊂⋂n
i=2 S′

i. Let m be an arbitrary number in {2, . . . , n}, and define Pm : X ′ → R+ as
Pm(x) = xm and

σm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf
T≥0

lim sup
y→x

y∈X′\S′
m

Pm(fT (y))
Pm(y)

if x ∈ S′
m,

inf
T≥0

Pm(fT (x))
Pm(x)

if x ∈ X ′\S′
m.

Then it is clear that Pm(x) = 0 if and only if x ∈ S′
m, i.e., condition (a) of Theorem

2.3 is satisfied. For every x ∈ X ′ we have

σm(x) = inf
T≥0

T−1∏
t=0

gm(x(t)) = inf
T≥0

(
exp

[(
1
T

T−1∑
t=0

ln gm(x(t))

)])T

,

where the continuity of the function f is used and x(t) is a solution of (1.1) with
x(0) = x. Since the function ln gm is concave on M , Jensen’s inequality implies

1
T

T−1∑
t=0

ln gm(x(t)) ≤ ln gm(
1
T

T−1∑
t=0

x(t)).

Since X ′ is a compact invariant set with X ′∩S1 = ∅, it is clear that ω(x)∩(X ′\S1) �=
∅ for every x ∈ X ′. Then, by Lemma 3.1, we see that µ(x) ∩ D−

1 �= ∅ holds for
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every x ∈ X ′. Therefore, the assumption X−
1 ∩ (

⋃n
i=2 X+

i ) = ∅ implies that for
every x ∈ X ′ there exists a sequence Tj → ∞ such that ln gm(

∑Tj−1
t=0 x(t)/Tj) < 0

for a sufficiently large j ∈ Z+. This implies that σm(x) < 1 for every x ∈ X ′. By
Theorem 2.3, we see that ω(X ′) ⊂ S′

m. This completes the proof since m is an
arbitrary number in {2, . . . , n}. �
Remark 3.3. If ln gk is convex and ln gi, i ∈ {1, . . . , n}\k are concave on R

n
+, and

(1.1) has a compact absorbing set X for R
n
+\O satisfying X ∩ O = ∅, then weak

dominance of species k implies its dominance.

4. Applications

In this section, we apply our main theorem (Theorem 3.2) to the following sys-
tem:

(4.1) xi(t + 1) = xi(t)hi(
n∑

j=1

aijxj(t)), i = 1, . . . , n,

where aij > 0, i, j ∈ {1, . . . , n}. We assume that each hi : R+ → R+ satisfies the
following conditions:

(A1): hi is positive and continuous,
(A2): hi is strictly decreasing, and hi(x∗

i ) = 1 at some x∗
i > 0.

Note that (A2) implies that hi(0) > 1 for every i ∈ {1, . . . , n}. Since the function
hi is a function of the weighted total population density, the null cline D+

i ∩D−
i is

the simplex
∑n

j=1 aijxj = x∗
i . We define Xij = x∗

i /aij .
Under the assumptions, by using Lemma 2.1, we can construct a compact ab-

sorbing set X for R
n
+\O satisfying X ∩ O = ∅ as follows.

Lemma 4.1. If (A1) and (A2) hold, then system (4.1) has a compact absorbing
set X for R

n
+\O satisfying X ∩ O = ∅.

Proof. By (A1), the non-negative cone R
n
+ is forward invariant. By (A2), there

exists an L > 0 such that p ≥ L implies hi(p) < 1 for all i ∈ {1, . . . , n}. Let
N := {x ∈ R

n
+ : (mini,j∈{1,...,n} aij)(x1 + · · ·+xn) < L}. N is an open subset of R

n
+

with a compact closure N ⊂ R
n
+. Let x(t) be a solution of (4.1) with x(0) ∈ R

n
+.

If x(t) ∈ R
n
+\N , then xi(t + 1) < xi(t) holds for all i ∈ {1, . . . , n}. Suppose that

x(t) ∈ R
n
+\N for all t ≥ 0. Since hi is strictly decreasing, there exists a δ ∈ (0, 1)

such that maxi∈{1,...,n} hi(p) ≤ δ for all p ≥ L. Then, by (4.1), we have
n∑

i=1

xi(t) =
n∑

i=1

xi(t − 1)hi(
n∑

j=1

aijxj(t − 1))

≤ δt
n∑

i=1

xi(0).

Hence,
∑n

i=1 xi(t) → 0 as t → ∞. This is a contradiction. Therefore, for every
x(0) ∈ R

n
+ there exists a t ≥ 0 such that x(t) ∈ N , i.e., γ+(x) ∩ N �= ∅ for every

x ∈ R
n
+. By Lemma 2.1, there exists a compact absorbing set M for R

n
+.

By using Lemma 2.1, we can also construct a compact absorbing set X for M\O
satisfying X ∩O = ∅ as follows. By (A2), there exists an l > 0 such that 0 ≤ p ≤ l
implies hi(p) > 1 for all i ∈ {1, . . . , n}. Then, by the same argument used above, we
can show that there exists an open subset V of M with compact closure V ⊂ M\O
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such that γ+(x)∩V �= ∅ for every M\O. (Note that Vl := {x ∈ R
n
+ : x1 + · · ·+xn >

l} is an open subset of R
n
+, and Vl ∩ M �= ∅ holds for all small l > 0 since M is an

absorbing set for R
n
+ and R

n
+\O is forward invariant. This implies that Vl∩M is an

open subset of M for all small l > 0.) Hence X := γ+(V ) is a compact absorbing
set for R

n
+\O satisfying X ∩ O = ∅. �

Theorem 3.2 with Lemma 4.1 leads to the following corollary.

Corollary 4.2. Consider system (4.1) with (A1) and (A2). Assume that the func-
tion ln hk is convex and the functions ln hi, i ∈ {1, . . . , n}\k, are concave on R+.
Then species k is dominant if Xi1 < Xk1, . . . , Xin < Xkn for all i ∈ {1, . . . , n}\k.

Proof. Each D+
i ∩D−

i is the simplex ai1x1 + · · ·+ ainxn = x∗
i . Then the condition

that Xi1 < Xk1, . . . , Xin < Xkn for all i ∈ {1, . . . , n}\k implies (
⋃

i∈{1,...,n}\k D+
i )∩

D−
k = ∅. Furthermore, the convexity and concavity of ln hi on R+ imply the con-

vexity and concavity of ln gi(x1, . . . , xn) = lnhi(
∑n

i=1 aijxj) on R
n
+, respectively.

Hence, Theorem 3.2 with Lemma 4.1 completes the proof. �
Remark 4.3. If ai1 = · · · = ain holds for all i ∈ {1, . . . , n}, then the condition
that Xi1 < Xk1, . . . , Xin < Xkn for all i ∈ {1, . . . , n}\k is reduced to the condition
that Xii < Xkk for all i ∈ {1, . . . , n}\k. Furthermore, this condition becomes
necessary and sufficient for dominance of species k. Indeed, in this case, a segment
connecting the fixed points on the xk- and xi-axes becomes a continuum of fixed
points if Xii = Xkk, and the fixed point on the xi-axis attracts some orbits on the
interior of the xk-xi face if Xii > Xkk.

The following systems are specific examples of system (4.1):

(4.2)

⎧⎨
⎩ x1(t + 1) = x1(t)

λ

(x1(t) + αx2(t) + β)γ
,

x2(t + 1) = x2(t) exp{r − a(bx1(t) + x2(t))},

(4.3)
{

x1(t + 1) = x1(t)[exp{r1 − a1(x1(t) + x2(t))} + s],
x2(t + 1) = x2(t) exp{r2 − a2(x1(t) + x2(t))},

where the parameters are positive and satisfy λ/βγ > 1 and 0 ≤ s < 1. We can find
the studies of (4.2) and (4.3) in [5, 6] and [2, 16, 17], respectively. It is clear that
both (4.2) and (4.3) satisfy the assumptions (A1) and (A2). It is straightforward to
confirm that the following functions lnh1 and lnh1 are convex and lnh2 and lnh2

are concave (and convex):

ln h1(p) = ln{λ/(p + β)γ}, ln h2(p) = r − p,

ln h1(p) = ln{exp(r1 − p) + s}, ln h2 = r2 − p.

Hence, the following two corollaries are immediate consequences of Corollary 4.2
and its remark.

Corollary 4.4. Species 1 of (4.2) is dominant if

λ
1
γ − β >

r

ab
and

λ
1
γ − β

α
>

r

a
.

Corollary 4.5. Species 1 of (4.3) is dominant if and only if
r1 − ln(1 − s)

a1
>

r2

a2
.
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Note that Corollary 4.4 is identical to Theorem 5.2 of Franke and Yakubu [5],
which was obtained by different methods, and Corollary 4.5 improves Theorem 5 of
Yakubu [17], in which an exclusion principle was obtained to consider the possibility
that the endangered species x1 could be saved by its planting. It is known that
species 2 does not always eliminate species 1 in systems (4.2) and (4.3) even if
species 2 is weakly dominant (see [5] and [17]). This shows that, in general, a
weakly dominant species k with concave ln gk does not always eliminate species j
with convex ln gj .

5. Discussion

This paper considered the dynamics of system (1.1), and gave a checkable con-
dition under which weak dominance implies dominance, that is, exclusion of all
weakly dominated species irrespective of initial population densities. This result
was applied to the competition model (4.1), including the models (4.2) and (4.3)
as a special case. In this application, we obtained sufficient conditions that ensure
exclusion of the weakly dominated species in (4.2) and (4.3). One of the sufficient
conditions reconfirmed the previous result by Franke and Yakubu [5], and the other
one improved the result by Yakubu [17].

In the rest of this section, we discuss the differences between our results and the
earlier ones by Franke and Yakubu [4, 6, 7]. To simplify the discussion, we consider
system (4.1) with n = 2 and aij = 1, i, j ∈ {1, 2} and assume that (A1) and (A2)
hold. The earlier results by Franke and Yakubu [4, 6, 7] involve three kinds of
methods, which are described as the following theorems for the simplified system:

Theorem 5.1 (cf. Theorem 3.1 of [7]). If ln h1(p) > ln h2(p) for all p ∈ R+, then
species 1 is dominant.

Theorem 5.2 (cf. Theorem 4.2 of [7]). Suppose that R
2
+\D−

1 has no return points,
i.e., for every x ∈ R

2
+\D−

1 there are no positive integers m and n, m > n, such that
fn(x) /∈ R

2
+\D−

1 but fm(x) ∈ R
2
+\D−

1 . Then species 1 is dominant if it is weakly
dominant.

Theorem 5.3 (Theorem 6.1 of [4]). Let Ti, i = 1, 2, be a forward invariant closed
interval which attracts all orbits on the xi-axis with xi(0) > 0. If max T2 < min T1,
then species 1 is dominant.

In order to consider an advantage of our results, we shall show, by using numerical
investigations, that the above three theorems cannot provide our result obtained in
Corollary 4.5. Figure 1 shows the graph of the functions ln hi, i = 1, 2, of system
(4.3) for a parameter set that satisfies the condition of Corollary 4.5. From this
figure, we see that Theorem 5.1 is not applicable to this case since lnh1(p) > ln h2(p)
is invalid at some p > 0. Figure 2(a) depicts a positive solution of system (4.3) with
the same parameters as in Figure 1. The positive solution with an initial point in
D−

1 leaves there and enters R
2
+\D−

1 , and it converges to a 2-cycle on the x1-axis
while oscillating between R

2
+\D−

1 and D−
1 . Hence, it is clear that R

2
+\D−

1 has a
return point. This implies that Theorem 5.2 is not applicable to this case. Figure
2(b) illustrates the boundary dynamics of system (4.3) with the same parameters
as in Figure 1. The solution on the x1-axis converges to a 2-cycle, while the one on
the x2-axis oscillates with large amplitude. Since Ti should include all omega limit
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Figure 1. The graphs of the functions lnh1(p) and lnh2(p). The
parameters are r1 = 3.5, r2 = 4, a1 = 1, a2 = 1, s1 = 0.5.
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Figure 2. (a) The phase plane of System (4.3). The solid line
represents a solution of System (4.3) with (x1(0), x2(0)) = (3, 2).
The dashed and dot-dashed lines represent the null clines D+

1 ∩D−
1

and D+
2 ∩ D−

2 , respectively. The black dots represent fixed points
and the white ones on the x1-axis represent a 2-cycle. (b) The
dynamics of System (4.3) on the xi-axis. The solid and dashed
lines represent solutions on the x1- and x2-axes, respectively. The
parameters are r1 = 3.5, r2 = 4, a1 = 1, a2 = 1, s1 = 0.5.

sets of boundary orbits with xi(0) > 0, Figure 2(b) implies that max T2 < min T1

does not hold. Therefore, Theorem 5.3 is also not applicable to this case.
Although Theorems 5.1-5.3 cannot prove Corollary 4.5, we see that these three

theorems have advantages. That is, the theorems cannot be deduced from our re-
sult (Theorem 3.2). In fact, it is easy to construct a specific model whose growth
rate functions satisfy lnh1(p) > ln h2(p) for all p ∈ R+ but have neither convexity
nor concavity. Moreover, we can find specific models to which we cannot apply our
results but can apply Theorems 5.2 or 5.3. For example, see Theorem 5.2 of [6]
and Theorem 1 of [3]. In Theorem 5.2 of [6] and Theorem 1 of [3], dominance of
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species 2 in systems (4.2) and (4.3) have been investigated, respectively. Since the
functions lnh1(p) and lnh1(p) are not concave but convex, we cannot apply our
result (Theorem 3.2) to these cases. However, Theorems 5.2 and 5.3 provide suffi-
cient conditions for dominance of species 2 in systems (4.2) and (4.3), respectively.
Therefore, our results do not dominate the earlier ones by Franke and Yakubu
[5, 6, 7], but have some advantages.
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