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Abstract. This paper derives a Lotka–Volterra equation with a certain symmetry from a coupled
nonlinear Leslie matrix model for interacting semelparous species. The global analysis focuses on the
special case where the system is composed of two species, one species having two age-classes and the
other species having a single age-class. This analysis almost completely describes its global dynamics
and provides examples that the age-structure changes the destiny of the system.
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1. Introduction. One of the most important and typical models for interacting
species is the Lotka–Volterra equation

(1.1) ẋi = xi(ri + (Ax)i), i = 1, 2, . . . , n,

where ri, i = 1, 2, . . . , n, denotes the intrinsic growth rate of species i and A = (aij)
is the interaction matrix determining the interaction between species. The variable
xi, i = 1, 2, . . . , n, indicates the population density of species i. From the fact that
each species is represented by a single variable, it is clear that each species is assumed
to consist of identical individuals. Classical approaches to community ecology have
been developed on such models lacking population structure, although this simplifi-
cation largely contributes mathematical tractability to models and helps to develop
mathematical theories for community ecology [14, 17, 20].

The purpose of this paper is to relax this fundamental assumption of classical
ecological models by taking into account a certain age-structure. This relaxation al-
lows us to consider much more complex species interactions, such as due to a complex
life history involving an abrupt ontogenetic change in an individual’s morphology,
physiology, and behavior (see [24, 25] for complex life histories). For example, in am-
phibians and insects, the habitat shifts occur at metamorphosis. The habitat shifts
could change their resources, enemies, competitors, cooperators, etc. In many cases,
even the sign of interaction between focal species changes. Our model framework can
study such a complex species interaction due to a complex life history if metamor-
phosis is age-specific. Furthermore, since each species could have a distinct length
of age-structure (i.e., generations could be asynchronous between species), the effect
of distinct generation times between species on the population dynamics can also be
explored.

The effect of age-structures on multispecies dynamics has previously been consid-
ered by several authors (e.g., see [1, 2, 3, 6, 8, 22, 23]). However, since the introduction
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AGE-STRUCTURED LOTKA–VOLTERRA EQUATIONS 695

of age-specific interactions usually leads to a formidable model equation, its math-
ematical treatment is restricted to the local stability analyses of equilibria. One of
our main purposes is to overcome this problem and provide a model equation whose
global dynamics is mathematically accessible. To this end, we advance the work by
Diekmann and van Gils [10], who obtained a Lotka–Volterra equation with a cyclic
matrix A and r = (1, 1, . . . , 1)� as a singular limit of a nonlinear Leslie matrix model
for a single semelparous species (i.e, individuals are assumed to reproduce only once
in their life). We advance their work and obtain a Lotka–Volterra equation for inter-
acting age-structured species. Since a vast amount of knowledge on Lotka–Volterra
equations is extremely beneficial in analyzing the model equation, we can mathemat-
ically obtain some results on the global dynamics, which clearly show the effect of
age-structures on multispecies dynamics.

This paper is organized as follows. In section 2, we construct a model equation for
interacting age-structured populations. This model is constructed by a coupled non-
linear Leslie matrix model. In section 3, we derive an age-structured Lotka–Volterra
equation from the coupled nonlinear Leslie matrix model constructed in section 2.
In section 4, we show that the age-structured Lotka–Volterra equation has a forward
invariant plane, on which the system behaves as an unstructured model. In section 5,
we consider three simple cases of the general age-structured Lotka–Volterra equa-
tions. The systems consist of two species: the first species has two age-classes, and
the second species has a single age-class. Depending on types of age-specific interac-
tions, the types of species interactions are classified into competitive, cooperative, and
predator-prey cases. The analysis completely describes the global dynamics of these
cases except in the case where the parameters satisfy certain algebraic equations. The
results show that an age-structure can definitely alters the destiny of systems. The
final section includes some concluding remarks.

2. Nonlinear coupled Leslie matrix models. Consider the population dy-
namics of N interacting species. We assume that species i consists of ni age-classes.
The population vector for species i is denoted by yi, where the jth component of yi

indicates the population density of age-class j of species i. For convenience, we write

y :=

⎛
⎜⎜⎜⎝

y1

y2

...
yN

⎞
⎟⎟⎟⎠ .

Therefore the (n1 + · · ·+ ni−1 + j)th component of y corresponds to the population
density of age-class j of species i. Our state space is Rn

+ := {y ∈ R
n : yi ≥ 0 for all i},

where n := n1 + n2 + · · · + nN . Let B = (bij) be an n × n matrix. Define (By)ij :=

(By)n1+···+ni−1+j. The superscript and the subscript of (By)ij correspond to the
indices of species and age-classes, respectively. For notational convenience, define
L[l1, l2, . . . , lni ] by

L[l1, l2, . . . , lni ] :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 lni

l1 0 · · · 0 0
0 l2 · · · 0 0
...

...
. . .

...
...

0 0 · · · lni−1 0

⎞
⎟⎟⎟⎟⎟⎠ .
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696 RYUSUKE KON

This is a special case of the Leslie matrix and reflects the age-structure of species i;
i.e., only the last age-class is reproductive.

Using this notation, we can express our coupled nonlinear Leslie matrix model as
follows:
(2.1)
yi(t+ 1) = L[σi

1((By(t))i1), σ
i
2((By(t))i2), . . . , σ

i
ni
((By(t))ini

)]yi(t), i = 1, 2, . . . , N,

where the function σi
j , j �= ni, defines the survival probability of age-class j of species i

and the function σi
ni

defines the number of offspring reproduced by a single individual
of species i belonging to the last age-class ni. As the sign pattern of L reflects, it is
assumed that only the last age-class is reproductive. This assumption is appropriate
for semelparous organisms such as many insects and Pacific salmon. Note that if
ni = 1, then species i can also be seen as an iteroparous species.

Each σi
j is a function of the weighted total population density (By)ij , where the

n×n matrix B = (bij) may have negative entries. The matrix B determines types of
age-specific species interaction. Divide the matrix B into N2 blocks as follows:

B =

⎛
⎜⎝

B11 · · · B1N

...
...

BN1 · · · BNN

⎞
⎟⎠ ,

where the diagonal block Bii is an ni × ni matrix. The diagonal and the off-diagonal
blocks determine types of intra- and interspecific interactions, respectively. The di-
agonal and the off-diagonal entries of Bii determine types of conspecific intra- and
interclass interactions, respectively. We assume that each σi

j satisfies the following:

(H1) σi
j : R → R is continuously differentiable.

(H2)
dσi

j(x)

dx > 0 for all i, j.

(H3) σi
j(0) > 0 and 1

σi
j(0)

dσi
j(x)

dx |x=0 = 1 for all i, j.

Assumption (H1) is assumed to obtain ordinary differential equations from the dis-
crete-time system (2.1). By (H2), bij < 0 (resp., bij > 0) implies that the contribution
of yi to the population growth is suppressed (resp., enhanced) by yj . Condition (H3)
is assumed to normalize the functions σi

j . For instance, σ
i
j(x) = cij exp(x) with cij > 0

satisfies (H1)–(H3).

3. Lotka–Volterra equations. Diekmann and van Gils [10] show that the
Lotka–Volterra equation (1.1) with a cyclic matrix A and r = (1, 1, . . . , 1)� appears
as a singular limit of (2.1) if N = 1. In this section, we advance their approach and
obtain a Lotka–Volterra equation for interacting multiple age-structured populations.

In the derivation of Lotka–Volterra equations, basic reproduction numbers play
an important role. The basic reproduction number for species i is given by Ri

0 =
σi
1(0)σ

i
2(0) · · ·σi

ni
(0) (e.g., see [3, 7]). Letm be the least common multiple of n1, n2, . . . ,

nN . Then species i experiences m/ni generations within m time steps. Hence,
(Ri

0)
m/ni denotes the expected number of descendants of species i per individual

per m time steps when density-dependent effect is ignored.. Define s1, s2, . . . , sN ∈ R

and h > 0 by

h =
ln(R1

0)
m/n1

s1
=

ln(R2
0)

m/n2

s2
= · · · = ln(RN

0 )m/nN

sN
> 0.

Note that s1, s2, . . . , sN and h are not uniquely determined, but they clearly exist.
Let λi be the dominant real eigenvalue of L[σi

1(0), σ
i
2(0), . . . , σ

i
ni
(0)]. Then λi =
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(Ri
0)

1/ni = esih/m. Let ui = (ui
1, u

i
2, . . . , u

i
ni
)� be a right eigenvector associated with

λi (the Perron–Frobenius theorem ensures that ui is positive). We normalize it by
assuming |ui| = ui

1+ui
2+ · · ·+ui

ni
= 1. Then define the new vector xi = (1/h)D−1

i yi,
where Di is the diagonal matrix Di = diag

{
ui
1, u

i
2, . . . , u

i
ni

}
. For convenience, we

write

x :=

⎛
⎜⎜⎜⎝

x1

x2

...
xN

⎞
⎟⎟⎟⎠ .

Hence x = (1/h)D−1y, where D = diag{D1, D2, . . . , DN}. Using these new vectors,
(2.1) is expressed as follows:

xi(t+ 1) = L

[
σi
1((By(t))i1)

ui
1

ui
2

, σi
2((By(t))i2)

ui
2

ui
3

, . . . , σi
ni
((By(t))ini

)
ui
ni

ui
1

]
xi(t)

= λiL

[
σi
1(h(Kx(t))i1)

σi
1(0)

,
σi
2(h(Kx(t))i2)

σi
2(0)

, . . . ,
σi
ni
(h(Kx(t))ini

)

σi
ni
(0)

]
xi(t),

where K = BD. Note that K has the same sign pattern as B. We notice that
x(t + j) → P jx(t) as h → 0, where P = diag{P1, P2, . . . , PN}, whose diagonal block
is the ni × ni permutation matrix Pi = L[1, 1, . . . , 1]. Because of the cyclicity of L,
the system is diagonalized in the following sense:

xi(t+m) = esihdiag

⎧⎨
⎩

m−1∏
j=0

σi
j+1(h(Kx(t+ j))ij+1)

σi
j+1(0)

,

m−1∏
j=0

σi
j+2(h(Kx(t+ j))ij+2)

σi
j+2(0)

,

. . . ,

m−1∏
j=0

σi
j+ni

(h(Kx(t+ j))ij+ni
)

σi
j+ni

(0)

⎫⎬
⎭xi(t),(3.1)

where λm = esih is used and the subscripts of σi
j and (Kx)ij are counted modulo ni.

From this equation, we can find

xi(t+m)− xi(t)

h
→ diag

⎧⎨
⎩si +

m−1∑
j=0

(KP jx(t))ij+1,

si +
m−1∑
j=0

(KP jx(t))ij+2,

. . . , si +

m−1∑
j=0

(KP jx(t))ij+ni

⎫⎬
⎭xi(t)

as h → 0, where (H3) is used and the subscript of (KP jx)il is counted modulo ni.
Therefore this leads to the “age-structured” Lotka–Volterra equation (1.1) with

r = (s1, . . . , s1, s2, . . . , s2, . . . , sN , . . . , sN )�,(3.2a)

A = K + P−1KP + (P−1)2KP 2 + · · ·+ (P−1)m−1KPm−1.(3.2b)
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Note P−1 = P� since P is a permutation matrix. Since this Lotka–Volterra equation
is derived through the time-m map (3.1), its dynamics corresponds to that of (2.1)
observed every mth unit of time. Therefore every equilibrium point of (1.1) corre-
sponds to a periodic orbit of (2.1) whose period is a factor of m. More precisely, since
x(t + j) → P jx(t) as h → 0, a point x of (1.1) satisfying x = P kx and x �= P jx,
0 < j < k, corresponds to a k-cycle of (2.1).

Species i has potentially ni cohorts, and each of them is represented by one of the
components of xi. If the unit of time is a year, then each component of xi corresponds
to the population density of a year-class of species i. Note that the year-class of an
individual is defined by its birth year, although the age-class of an individual is defined
by its age.

4. Invariance and unstructured systems. Define I1, I2, . . . , IN by

I1 = {1, 2, . . . , n1},
I2 = {n1 + 1, n1 + 2, . . . , n1 + n2},

...

IN = {n1 + n2 + · · ·+ nN−1 + 1, n1 + n2 + · · ·+ nN−1 + 2, . . . , n}.
Define Mi, i = 1, 2, . . . , N , by

Mi = {x ∈ R
n
+ : xj = xk for all j, k ∈ Ii},

on which the class distribution of species i is evenly distributed. This section investi-
gates the dynamics on M :=

⋂N
i=1 Mi.

Proposition 4.1. The set M is forward invariant under (1.1) with (3.2). On
M , the total population density of species i, Xi :=

∑
j∈Ii

xj, i = 1, 2, . . . , N , is
governed by the Lotka–Volterra equation

(4.1) Ẋi = Xi(si + (ĀX)i), i = 1, 2, . . . , N,

where X = (X1, X2, . . . , XN )� and Ā = (āij) with āij =
∑

k∈Ii

∑
l∈Ij

akl/(ninj).

Proof. To prove the first statement, we show that x(0) ∈ M implies x(t) ∈ M for
all t ≥ 0. Define pij by

pij =
xj∑

k∈Ii
xk

, j ∈ Ii.

This gives the class distribution of species i. Without loss of generality, we consider
only the case x(0) ∈ M with xi(0) �= 0 for all i ∈ {1, 2, . . . , N}. If x ∈ M , then we
have

pij =
1

ni
, j ∈ Ii.

We shall show that pij does not change in time. The time derivative of pij is given by

ṗij = pij

{
rj + (Ax)j −

∑
k∈Ii

pik(rk + (Ax)k)

}
, j ∈ Ii

= pij

{
(Ax)j −

∑
k∈Ii

pik(Ax)k

}
,(4.2)
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where we used the fact that rk = si for all k ∈ Ii. It is clear that Px = x if x ∈ M since
the permutation matrix P exchanges the indices only between conspecific classes (i.e.,
P = diag{P1, P2, . . . , PN}). Furthermore, for every j and k, we have ((P−1)kx)j =
xτk(j), where τ(j) is the permutation defined by P . Using these properties, we can
show that the inside of the braces of (4.2) at x ∈ M becomes

(Kx)j + (P−1KPx)j + · · ·+ ((P−1)m−1KPm−1x)j

− 1

ni

∑
k∈Ii

{(Kx)k + (P−1KPx)k + · · ·+ ((P−1)m−1KPm−1x)k}

= (Kx)j + (P−1Kx)j + · · ·+ ((P−1)m−1Kx)j

− 1

ni

∑
k∈Ii

{(Kx)k + (P−1Kx)k + · · ·+ ((P−1)m−1Kx)k}

= (Kx)j + (Kx)τ(j) + · · ·+ (Kx)τm−1(j)

− 1

ni

∑
k∈Ii

{(Kx)k + (Kx)τ(k) + · · ·+ (Kx)τm−1(k)} = 0.

Therefore, ṗij(t) = 0 holds for all t ≥ 0 whenever x(0) = M . This implies that M is
forward invariant.

It is straightforward to prove the second statement. On the set M , xk = Xi/ni

holds for all k ∈ Ii. Therefore, if we use the fact that rk = si for all k ∈ Ii, then the
time derivative of Xi is given by

Ẋi =
∑
k∈Ii

xk(rk + (Ax)k) = Xi

⎛
⎝si +

N∑
j=1

∑
k∈Ii

∑
l∈Ij

akl

ninj
Xj

⎞
⎠ .

This completes the proof.
The invariance of M is strongly related to the dynamics of the original coupled

Leslie matrix model (2.1). The linearization of (2.1) at the origin leads to N linear
Leslie matrix models

yi(t+ 1) = L[σi
1(0), σ

i
2(0), . . . , σ

i
ni
(0)]yi(t), i = 1, 2, . . . , N,

which are mutually decoupled. Although none of them has a stable age-distribution
since L is imprimitive, they have a stationary age-distribution. The stationary age-
distribution of species i is given by the right (normalized) eigenvector ui of L[σ

i
1(0), σ

i
2(0),

. . . , σi
ni
(0)] associated with the dominant eigenvalue λi = (Ri

0)
1
ni , namely ui =

wi/|wi|, where

wi =

(
1,

σi
1(0)

λi
, . . . ,

σi
1(0)σ

i
2(0) · · ·σi

ni−1(0)

λni−1
i

)�
,

|wi| = 1 +
σi
1(0)

λi
+ · · ·+ σi

1(0)σ
i
2(0) · · ·σi

ni−1(0)

λni−1
i

.

The distribution ui corresponds to the vector 1
h (1, 1, . . . , 1)

� in the coordinate system
of the Lotka–Volterra equation (1.1) with (3.2) since x = (1/h)D−1y. Therefore the
invariance of M implies that the age-distribution ui is still stationary in the Lotka–
Volterra equation (1.1) with (3.2). Furthermore, (4.1) can be interpreted as a model
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derived under the assumption that the age-distribution of each species is fixed at
the stationary age-distribution. In this sense, (4.1) gives the population dynamics
ignoring age-structure.

Since x = Px if and only if x ∈ M , every equilibrium x ∈ M (resp., x /∈ M) of
(1.1) with (3.2) corresponds to an equilibrium (resp., a k-cycle, k > 1) of (2.1).

5. Three-dimensional Lotka–Volterra equations for two species. In this
section, we study a simple case of (1.1) with (3.2) and show that an age-structure is
influential to the population dynamics. We assume that our system is composed of
two species, the first species having two age-classes and the second species having a
single age-class, i.e., N = 2, n1 = 2, n2 = 1, I1 = {1, 2}, and I2 = {3}. In this case,
the system is three-dimensional, i.e., n = 3. We further assume that all interactions
among conspecific individuals are competitive. That is, we assume that the matrix B
for (2.1) has the following sign pattern:

B =

⎛
⎝ − − ∗

− − ∗
∗ ∗ −

⎞
⎠ ,

where ∗ indicates an arbitrary sign.
The age-specific interaction matrix A defined by (3.2) can be derived as follows.

Since N = 2, n1 = 2, and n2 = 1, the permutation matrix P is given by

P =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ .

Since the least common multiple of n1 and n2 is m = 2, the age-specific interaction
matrix A is

A = K + P−1KP =

⎛
⎝ k11 + k22 k12 + k21 k13 + k23

k21 + k12 k22 + k11 k23 + k13
k31 + k32 k32 + k31 k33 + k33

⎞
⎠ ,

where K = BD or

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

b11

√
σ1
2(0)√

σ1
1(0)+

√
σ1
2(0)

b12

√
σ1
1(0)√

σ1
1(0)+

√
σ1
2(0)

b13

b21

√
σ1
2(0)√

σ1
1(0)+

√
σ1
2(0)

b22

√
σ1
1(0)√

σ1
1(0)+

√
σ1
2(0)

b23

b31

√
σ1
2(0)√

σ1
1(0)+

√
σ1
2(0)

b32

√
σ1
1(0)√

σ1
1(0)+

√
σ1
2(0)

b33

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For convenience, we write

(5.1) A =

⎛
⎝ −a −b α

−b −a α
β β −c

⎞
⎠ ,

where a, b, c > 0 and α, β ∈ R because of the sign pattern of B.
By Proposition 4.1, the set M = {x ∈ R

3
+ : x1 = x2} is forward invariant. On this

set, the system is reduced to the following two-dimensional Lotka–Volterra equation:

(5.2)

{
Ẋ1 = X1(s1 − a+b

2 X1 + αX2),

Ẋ2 = X2(s2 + βX1 − cX2).
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By definition, α and β are given by

α = b13 + b23, β =
b31

√
σ1
2(0) + b32

√
σ1
1(0)√

σ1
1(0) +

√
σ1
2(0)

.

Note that β is the inner product of (b31, b32)
� and u1, which is the stationary age-

distribution of species 1 predicted by the linear Leslie matrix model (see section 4).
Both α and β depend on two age-specific interactions. The parameter α, which
represents the influence of species 2 on species 1, is solely determined by how each
age-class of species 1 is affected by species 2. For example, if species 2 strongly reduces
(resp., enhances) the activity of one of the age-classes of species 1, then α becomes
negative (resp., positive). On the other hand, the parameter β, which represents the
influence of species 1 on species 2, depends also on the life cycle strategy of species 1.
We see that the abundant age-class of species 1 at the stationary age-distribution has
a dominant effect on the sign of β. For example, if species 1 is of mass production
(i.e., high fecundity and high mortality, σ1

1(0) < σ1
2(0)), then the first age-class of

species 1 is more influential to species 2.
In the rest of this section, we focus on the following three typical cases: competi-

tion (α, β) = (−,−), (s1, s2) = (+,+); cooperation (α, β) = (+,+), (s1, s2) = (+,+);
predator-prey interaction (α, β) = (−,+), (s1, s2) = (+,−) or (α, β) = (+,−),
(s1, s2) = (−,+). By the analysis of these cases, we show how the introduction
of an age-structure alters the dynamical behavior of interacting species.

5.1. Competitive species interactions. Consider the case (α, β) = (−,−),
(s1, s2) = (+,+). In this case, we can prove the following theorem.

Theorem 5.1. Suppose that all equilibria are isolated. Then every forward orbit
in R

3
+ converges to an equilibrium point.
Proof. Since ẋi < 0 for all i whenever x1 + x2 + x3 is sufficiently large, every

solution is bounded for t ≥ 0. Let D = diag{−β,−β,−α}. Then DA is symmetric.
Therefore V (x) = −2x ·Dr− x ·DAx is a Liapunov function [18]. In fact,

V̇ (x) = −2β

2∑
i=1

xi(ri + (Ax)i)
2 − 2αx3(r3 + (Ax)3)

2 ≤ 0

holds for all x ∈ R
3
+. Since V̇ (x) = 0 if and only if x is an equilibrium point, every

ω-limit set is composed of equilibrium points. Since every ω-limit set is connected,
every forward orbit converges to an equilibrium point.

This theorem shows that the local stability analysis of equilibrium points reveals
the global dynamics of the system.

The system has at most 23 = 8 isolated equilibrium points: 0 = (0, 0, 0), F1,
F2, F3, F12, F13, F23, and F123, where the subscript of F denotes the indices of the
positive entries. As mentioned in section 2, some of these equilibria do not correspond
to an equilibrium of the original coupled Leslie matrix model (2.1). We see that 0, F3,
F12, and F123 correspond to an equilibrium and {F1, F2} and {F13, F23} correspond
to 2-cycles of (2.1). Note that on the cycles one of the classes of species 1 is always
missing. More precisely, the cycles corresponding to {F1, F2} and {F13, F23} have the
following sign patterns, respectively:⎛

⎝ +
0
0

⎞
⎠ →

⎛
⎝ 0

+
0

⎞
⎠ →

⎛
⎝ +

0
0

⎞
⎠ ,

⎛
⎝ +

0
+

⎞
⎠ →

⎛
⎝ 0

+
+

⎞
⎠ →

⎛
⎝ +

0
+

⎞
⎠ .
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Table 5.1

The external eigenvalues of the boundary equilibrium points (x1, x2, x3) satisfying x1 ≥ x2 for
the competitive case.

ẋ1/x1 ẋ2/x2 ẋ3/x3

0 s1 > 0 s1 > 0 s2 > 0

F1 0 s1
a
ξ1

s2
a
ξ3

F3
s1
c
ξ2

s1
c
ξ2 0

F12 0 0 2s2
a+b

(ξ3 − ξ1
2
)

F13 0 ξ1x1 0

Since the vector field is symmetric to M , we focus on the equilibrium points x satis-
fying x1 ≥ x2, i.e., 0, F1, F3, F12, F13, and F123. Define ξ1, ξ2, and ξ3 by

ξ1 = a− b, ξ2 = c+ α
s2
s1

, ξ3 = a+ β
s1
s2

.

Then the external eigenvalues of 0, F1, F3, F12, and F13 can be expressed as in Table
5.1. Since the dynamics on the boundary of R3

+ is governed by a lower-dimensional
Lotka–Volterra equation, it is clear that F1 and F3 are always internally asymptot-
ically stable,1 and F1i, i = 2, 3, is internally asymptotically stable if and only if
ẋ1/x1|Fi > 0 and ẋi/xi|F1 > 0. The Jacobi matrix evaluated at F123 = (x∗

1, x
∗
2, x

∗
3) is

given by J = diag{x∗
1, x

∗
1, x

∗
3}A. Note that, by symmetry, x∗

1 = x∗
2 holds. J is stable

if and only if trJ < 0, detJ < 0, and MtrJ − det J < 0, where M is the sum of the
three principal 2× 2 minors of J . We have

trJ = −2ax∗
1 − cx∗

3 < 0,

detJ = −2ξ1 det Āx
∗
1
2x∗

3,

MtrJ − detJ = −2a(a+ b)ξ1x
∗
1
3 − 2c(ac− αβ)x∗

1x
∗
3
2

− 2{2a(ac− αβ) + ξ1αβ}x∗
1
2x∗

3.

It is straightforward to show that ac − αβ > 0 if det Ā > 0 and ξ1 > 0. Therefore
J is stable if det Ā > 0 and ξ1 > 0. Conversely, if J is stable, then the Jacobi
matrix of (5.2) evaluated at (2x∗

1, x
∗
3) must be stable; i.e., det Ā > 0 holds. Finally,

detJ < 0 with det Ā > 0 implies ξ1 > 0. Consequently, J is stable if and only if
det Ā > 0 and ξ1 > 0. Using these results, we can classify the qualitative dynamics
into 12 classes if we ignore the critical cases where at least one of ξ1 = 0, ξ2 = 0,
ξ3 = 0, and ξ3 = ξ1/2 is satisfied (see Figure 5.1). In the critical cases, our system has
a nonhyperbolic equilibrium. In particular, our system has a continuum of equilibria
if ξ1 = 0, ξ2 = ξ3 = 0, or ξ2 = ξ3 − ξ1/2 = 0 holds. In Figure 5.1, typical phase
portraits for x �= 0 are radiationally projected from 0 to the simplex x1 +x2+x3 = 1
since all solutions are bounded and the ω-limit set ω(x) with x �= 0 does not include 0.

Let us compare the dynamics on M with that on R
3
+\M . As shown in section 4,

the dynamics restricted on M shows how the system behaves if the age-structure is
ignored. If ξ1 > 0, then every attractor of the full system is located onM . This implies
that the system reaches the same point even if the age-structure is incorporated.
Therefore, in this case, the age-structure does not alter the asymptotical behavior
of the system. On the other hand, if ξ1 < 0, then we can find an attractor on

1An equilibrium point x∗ of (1.1) is said to be internally asymptotically stable if it is asymptot-
ically stable in the subsystem composed of all species i ∈ supp(x∗), where supp(x∗) = {i : x∗

i > 0}.
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ξ1 > 0

ξ2

ξ3

ξ1/2

ξ1 < 0

ξ2

ξ3

ξ1/2

(7)

(23)

(21)

(33)

(12)

(6)

(3)

(18)

(32)

(25)

(19)

(13)

F3

F1 F2

F13 F23

F12

0

0

Fig. 5.1. The phase portraits for the competitive case. Each (ξ2, ξ3) parameter plane is sub-
divided into six regions, in which a typical phase portrait is shown. The vertical lines on the phase
planes correspond to M . An equilibrium point is represented by a closed dot • if it is asymptotically
stable; by an open dot ◦ if it is repelling; by an intersection of hyperbolic manifolds if it is a saddle.
The numbers represented in the parentheses correspond to Zeeman’s classification number [26].

R
3
+\M . Especially, we find an interesting behavior if ξ1/2 < ξ3 < 0 is satisfied.

If ξ1/2 < ξ3 < 0 and ξ2 < 0, then the dynamics on M predicts that species 1 is
eliminated by species 2, but the full dynamics shows that species 1 could be eliminated
depending on initial conditions; i.e., the full system is bistable. If ξ1/2 < ξ3 < 0
and ξ2 > 0, then the dynamics on M predicts coexistence of the two species, but
the full dynamics predicts that species 2 is almost always eliminated by species 1.
Therefore, if ξ1 < 0, then the age-structure alters the destiny of the two species. This
change of destiny can be interpreted as follows. By definition, ξ1 < 0 implies that
intraspecific competition of species 1 is more severe between than within classes. The
severe interclass competition leads to competitive exclusion between classes (e.g., see
[2, 4, 8, 9, 15, 16, 19]), and this competitive exclusion improves the environment of
species 1 since severe interclass competition disappears. Furthermore, this relaxation
of severe intraclass competition of species 1 increases its total population density, and
this increase makes the environment of species 2 worse. That is, the age-structure of
species 1 is deleterious to species 2. This suggests that a competition model without
age-structures overestimates the possibility of species coexistence.

5.2. Cooperative species interaction. Consider the case (α, β) = (+,+),
(s1, s2) = (+,+). Then (5.2) is a two-dimensional Lotka–Volterra cooperative system.
It is known that each orbit of such a two-dimensional cooperative system converges
either to an equilibrium point or to infinity (e.g., see [14, Theorem 3.4.1]). Since
(s1, s2) = (+,+) is assumed, any positive solution of (5.2) cannot converge to a
boundary equilibrium. Therefore, all positive solutions of (5.2) converge to infinity if
(5.2) has no positive equilibrium, i.e., (a+ b)c/2 ≤ αβ. Conversely, if (a+ b)c/2 > αβ
is satisfied, then (5.2) has a unique positive equilibrium point, to which all positive
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solutions converge (e.g., see [14, Theorem 15.1.1]). The same argument can apply to
the cooperative subsystem on the face xi = 0, i = 1, 2. That is, all positive solutions
of the subsystem converge to infinity (resp., to a positive equilibrium) if ac ≤ αβ
(resp., ac > αβ).

In order to characterize not only bounded orbits but also unbounded orbits,
we consider the replicator dynamics topologically equivalent to our Lotka–Volterra
dynamics. The coordinate transformation z0 = 1/(1 + x1 + x2 + x3) and zi =
xi/(1 + x1 + x2 + x3), i = 1, 2, 3, proposed in [12] leads to the following replicator
equation:

(5.3) żi = zi((Âz)i − z · Âz), i = 0, 1, 2, 3,

with the payoff matrix

Â =

⎛
⎜⎜⎝

0 0 0 0
s1 −a −b α
s1 −b −a α
s2 β β −c

⎞
⎟⎟⎠ .

This equation is defined on the simplex S4 := {z ∈ R
4
+ : z0 + z1 + z2 + z3 = 1}, and

the face F∞ := {z ∈ S4 : z0 = 0} corresponds to the points at infinity. The replicator
equation (5.3) satisfies the following theorem.

Theorem 5.2. Suppose that all equilibria are isolated. Then every orbit converges
to an equilibrium point.

Proof. It is known that if Â is symmetric, then V (z) = z·Âz is a Liapunov function

for (5.3) (see [14, Theorem 7.8.1]). In fact, V̇ (z) = 2
∑4

i=1 zi[(Âz)i−z·Âz]2 ≥ 0 for all

z ∈ S4. Furthermore, V̇ (z) = 0 if and only if z is an equilibrium point of (5.3). This
implies that every ω-limit set is composed of equilibrium points. Since each ω-limit
set is connected, every orbit converges to an equilibrium point. Therefore, we shall
show that our system is equivalent to (5.3) with a symmetric Â.

We use the following properties of the replicator equation: (i) the addition of a
constant cj to the jth column of Â does not change (5.3) on S4; (ii) the transformation

yi = zici/
∑4

j=1 zjcj with cj > 0 leads to (5.3) with the payoff matrix (aijc
−1
j ) (see

also [14, Exercises 7.1.2 and 7.1.3]). These properties can be derived as follows. Let
C be a 4×4 matrix whose (i, j) entry is cj . Then (Â+C)z−z ·(Â+C)z = Âz−z ·Âz

holds for z ∈ S4. Therefore, (5.3) does not change even if Â is replaced by Â + C.

Let yi = zici/
∑4

j=1 zjcj with cj > 0. Then ẏi = (
∑4

j=1 zj)yi((Ãy)i − y · Ãy) with

Ã = (aijc
−1
j ). Therefore, it has the same phase portrait as (5.3) with the payoff

matrix Ã.
If s1 ≥ s2, then we subtract s2 from the first column and add s1 − s2 ≥ 0 to

the second and the third columns. Then the multiplication of the fourth column by
(β+ s1− s2)/α leads to a symmetric matrix. If s1 < s2, then we subtract s1 from the
first column and add s2−s1 > 0 to the fourth column. Then the multiplication of the
second and the third columns by (α+ s2 − s1)/β leads to a symmetric matrix.

This theorem shows that the local stability analysis reveals the global dynamics
of (5.3).

Equation (5.3) has at most 24 − 1 = 15 isolated equilibrium points. Since (5.3) is
symmetric with respect to the plane z1 = z2, we examine the stability of the isolated
equilibrium points (z0, z1, z2, z3) satisfying z1 ≥ z2, i.e., F0, F1, F3, F01, F03, F12, F13,
F012, F013, F123, and F0123. Table 5.2 gives their external eigenvalues. By this table,
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Table 5.2

The external eigenvalues of the boundary equilibrium points (z0, z1, z2, z3) of (5.3) satisfying
z1 ≥ z2.

ż0/z0 ż1/z1 ż2/z2 ż3/z3

F0 0 s1 > 0 s1 > 0 s2 > 0
F1 a > 0 0 ξ1 a+ β > 0
F3 c > 0 c+ α > 0 c+ α > 0 0

F01 0 0 ξ1z1
s2ξ3
a+s1

> 0

F12
a+b
2

> 0 0 0 a+b
2

+ β > 0

F03 0 s1ξ2
c+s2

> 0 s1ξ2
c+s2

> 0 0

F13
ac−αβ

a+c+α+β
0 ξ1z1 0

F012 0 0 0
(a+b)s2+2s1β

a+b+2s1
> 0

F123
(a+b)c−2αβ

a+b+2(c+α+β)
0 0 0

F013 0 0 ξ1z1 0

F0

F1

F2

F3

F12

F01

F012 F02

F03

Fig. 5.2. The simplex S4 with the information about the external eigenvalues of the boundary
equilibrium points for (5.3). An equilibrium point is represented by an open dot ◦ if it is a repeller.

we can depict the phase portrait given in Figure 5.2. This figure shows that F13,
F23, F123, F013, F023, and F0123 are only the candidates of the ω-limit sets of positive
points. By the property of the original Lotka–Volterra cooperative system, F013 and
F012 are internally asymptotically stable if and only if ac > αβ and (a+ b)c/2 > αβ,
respectively. The stability analysis in the previous subsection for the competitive case
shows that the Jacobi matrix evaluated at F0123 is stable if and only if ξ1 > 0 since
det Ā > 0 is necessary for the existence of F0123. Furthermore, it is straightforward
to show that F123 is linearly stable on the face F∞ if and only if ξ1 > 0. With this
information, we can classify the qualitative dynamics into six classes if we ignore the
critical cases where at least one of ξ1 = 0, αβ = ac, and αβ = (a + b)c/2 is satisfied
(see Figure 5.3). In the critical cases, our system has a nonhyperbolic equilibrium. In
particular, our system has a continuum of equilibria if ξ1 = 0. In Figure 5.3, typical
phase portraits for 0 < z3 < 1 are radiationally projected from F3 to the face z3 = 0
since ω(z) with 0 < z3 < 1 includes neither a point on the face z3 = 0 nor the point F3.

Let us compare the dynamics on M with that on R
3
+\M . Similarly to the com-

petitive case, if ξ1 > 0, then every attractor of the full system is located on M ,
but if ξ1 < 0, then we can find an attractor on R

3
+\M . Especially, if ξ1 < 0 and
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ξ1 > 0 ξ1 < 0

αβ αβ

ac

ac
(a+b)c

2

(a+b)c
2

F03

F13 F23
F123

F013 F012

0 0

Fig. 5.3. The phase portraits for the cooperative case. Each of the αβ-axes is subdivided into
three intervals, in which a typical phase portrait is shown. The base lines of the triangles correspond
to F∞. The vertical lines in the phase planes correspond to M . An equilibrium point is represented
by a closed dot • if it is asymptotically stable; by an open dot ◦ if it is repelling; by an intersection
of hyperbolic manifolds if it is a saddle.

ac < αβ < (a + b)c/2, then the dynamics on M does not coincide with that on
R

3
+\M . That is, the unstructured system predicts that two species coexist, but the

structured system predicts that the total population densities of the two species grow
without limitation. This behavior can be interpreted as follows. If ξ1 < 0, then
competitive exclusion between classes of species 1 leads to a better environment for
species 1 in the sense that the intraspecific competition is relaxed. This relaxation
enhances the total population density of species 1. Therefore species 2 obtains more
cooperators, and the unbounded increase of the total population densities follows.

5.3. Predator-prey species interactions. Consider the cases where (α, β) =
(−,+), (s1, s2) = (+,−) or (α, β) = (+,−), (s1, s2) = (−,+) is fulfilled. In these
cases, the interaction between two species is predator-prey: X1 is a prey and X2 is
a predator if (α, β) = (−,+), (s1, s2) = (+,−); X1 is a predator and X2 is a prey if
(α, β) = (+,−), (s1, s2) = (−,+). The dissipativity is shown as follows.

Proposition 5.3. The system is dissipative; i.e., there exists a positive number
D > 0 such that lim supt→∞ xi(t) ≤ D for all x(0) ∈ R

3
+.

Proof. Let V (x) = |β|x1 + |β|x2 + |α|x3. Then the time derivative of V satisfies

V̇ (x) + V (x) ≤ |β|x1(s1 + 1− ax1) + |β|x2(s1 + 1− ax2) + |α|x3(s2 + 1− cx3).

Since there exists a positive number L > 0 such that V̇ (x)+V (x) < L for all x ∈ R
3
+,

lim supt→∞ V (x(t)) ≤ L holds for all x(0) ∈ R
3
+. This implies that our system is

dissipative.

5.3.1. Prey-predator: (α, β) = (−,+), (s1, s2) = (+,−). In this case, the
system has at most seven isolated equilibrium points, 0, F1, F2, F12, F13, F23, and
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F123. Since the vector field is symmetric to M , we focus on the equilibrium points x
satisfying x1 ≥ x2, i.e., 0, F1, F12, F13, and F123. The external eigenvalues of 0, F1,
F12, and F13 are identical to those given in Table 5.1 (F3 does not exist). Since the
dynamics on the boundary of R3

+ is governed by a lower-dimensional Lotka–Volterra
equation, it is clear that F1 and F13 are always internally asymptotically stable, and
F12 is internally asymptotically stable if and only if ẋ1/x1|F2 > 0 and ẋ2/x2|F1 > 0.
Furthermore, if Fi, i = 1, 12, 13, is internally asymptotically stable, then it attracts
all points x satisfying supp(x) = supp(Fi), where supp(x) := {i : xi > 0}. The
stability condition of the Jacobi matrix J given in section 5.1 shows that the Jacobi
matrix evaluated at F123 is stable if and only if ξ1 > 0 since det Ā > 0. By the linear
stability of the equilibrium points, we can classify the system into six classes if we
ignore the critical cases where at least one of ξ1 = 0, ξ3 = 0, and ξ3 = ξ1/2 is satisfied
(see Figure 5.4). In the critical cases, our system has a nonhyperbolic equilibrium. In
particular, our system has a continuum of equilibria if ξ1 = 0. As given below, the
local stability of a fixed point also ensures its global stability.

Proposition 5.4. For every x(0) ∈ R
3
+ with x1(0) + x2(0) > 0, there exists a

positive number δ > 0 such that

lim inf
t→∞ (x1(t) + x2(t)) ≥ δ.

Proof. Let x ∈ R
3
+ with x1+x2 > 0. Since every solution on the x3-axis converges

to 0 and ẋ1/x1|0 > 0, ẋ2/x2|0 > 0, and ẋ3/x3|0 < 0 hold, any solution starting at x
cannot coverage to the hyperbolic equilibrium 0. Therefore, if ω(x) includes a point
on the x3-axis, it includes a point on the x3-axis different from 0. But it is impossible
since the ω-limit set of any bounded orbit is compact and invariant, although all
nonzero points on the x3-axis have an unbounded backward orbit.

Theorem 5.5. (i) F12 attracts all points x ∈ R
3
+ with x1 > 0 and x2 > 0 if

ξ1 > 0 and ξ3 > ξ1/2.
(ii) F123 attracts all positive points if ξ1 > 0 and 0 < ξ3 < ξ1/2.
(iii) F1 (resp., F2) attracts all points x ∈ R

3
+ with x1 > x2 (resp., x1 < x2) if

ξ1 < 0 and ξ3 > 0.
(iv) F13 (resp., F23) attracts all points x ∈ R

3
+ with x1 > x2 (resp., x1 < x2) and

x3 > 0 if ξ1 < 0 and ξ3 < 0.
Proof. Consider cases (i) and (ii). In these cases, the matrix A is VL-stable (see

section A.1). In fact, DA + A�D is negative definite for D = diag{β, β,−α}. The
theory of VL-stability leads to statements (i) and (ii).

Consider cases (iii) and (iv). Let x(0) ∈ R
3
+ with x1(0) > x2(0). If either

x2(0) = 0 or x3(0) = 0 holds, then the conclusion is clear since the system is planar.
In fact, if x3(0) = 0, then Theorem 5.1 is applicable since the behavior on the face
x3 = 0 is independent of the signs of α and β. Therefore, in this case, x(t) converges
to F1. If x2(0) = 0, then the above argument of VL-stability is applicable since the
principal submatrix of A with respect to the indices 1 and 3 is VL-stable. Therefore,
in this case, x(t) converges to F1 if ξ3 > 0 and to F13 if ξ3 < 0. Assume that
x2(0) > 0 and x3(0) > 0. By Propositions 5.3 and 5.4, there exist positive numbers
δ > 0 and D > 0 such that δ ≤ x1(t) + x2(t) ≤ D and 0 ≤ x3(t) ≤ D for all
t ≥ 0. Define P (x) = x1/x2. Its time derivative is given by Ṗ (x) = P (x)ξ1(x2 − x1),
which is positive if x1 > x2 > 0. Since ω(x(0)) is invariant, it must be contained in
Ω = {x ∈ R

3
+ : δ ≤ x1 ≤ D, x2 = 0, 0 ≤ x3 ≤ D}. If ξ3 > 0, then ω(x(0)) = {F1}

since all orbits in Ω converge to F1. If ξ3 < 0, then the maximum invariant set in Ω is
the closure of the connecting orbit between F1 and F13. Since the ω-limit set of any
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ξ1 > 0 ξ1 < 0
ξ3 ξ3

ξ1
2

ξ1
2

F12F1 F2

F13 F23

F123

0

0

Fig. 5.4. The phase portraits for the prey-predator case. Each region contains a typical phase
portrait. An equilibrium point is represented by a closed dot • if it is asymptotically; by an open dot
◦ if it is repelling; by an intersection of hyperbolic manifolds if it is a saddle.

bounded orbit is internally chain transitive (see section A.2), ω(x(0)) = {F13}. Note
that every point x ∈ R

3
+ with x1 > 0, x2 = 0, and x3 > 0 is attracted by F13. The

same method is applicable to x(0) ∈ R
3
+ with x2(0) > x1(0).

In Figure 5.4, typical phase portraits for x1 + x2 > 0 are projected from the
x3-axis to the face x1 + x2 = 1 since ω(x) does not intersect with the x3-axis if
x1 + x2 > 0. If ξ1 > 0, then the full system behaves as predicted by the dynamics
on M . On the other hand, if ξ1 < 0, then the dynamics on M does not always
coincide with that on R

3
+\M . The disagreement can be observed if ξ1/2 < ξ3 < 0.

In this case, the dynamics on M shows that species 2 goes extinct, but species 1 can
support species 2 if the age-structure is incorporated. This coexistence occurs with the
following mechanism. The condition ξ1 < 0 leads to competitive exclusion between
classes of species 1. Since the competition is more severe between than within classes
if ξ1 < 0, the competitive exclusion relaxes the intraspecific competition of species 1
and increases the total population density of species 1. Consequently, this abundant
resource allows species 2 to persist.

5.3.2. Predator-prey: (α, β) = (+,−), (s1, s2) = (−,+). In this case, the
system has at most five isolated equilibrium points, 0, F3, F13, F23, and F123. Since
the vector field is symmetric to M , we focus on the equilibrium points x satisfying
x1 ≥ x2, i.e., 0, F3, F13, and F123. The external eigenvalues of 0, F3, and F13 are
identical to those given in Table 5.1 (F1 and F12 do not exist). It is clear that F3 and
F13 are always internally asymptotically stable and Fi, i = 3, 13, attracts all points
x with supp(x) = supp(Fi). Similarly to the previous prey-predator case, the Jacobi
matrix evaluated at F123 is stable if and only if ξ1 > 0. By the linear stability of the
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equilibrium points, the system is classified into four classes if we ignore the critical
cases where at least one of ξ1 = 0 and ξ2 = 0 is satisfied (see Figure 5.5). In the
critical cases, our system has a nonhyperbolic equilibrium. In particular, our system
has a continuum of equilibria if ξ1 = 0. As given below, the local stability of a fixed
point also ensures its global stability.

Proposition 5.6. There exists a positive number δ > 0 such that

lim inf
t→∞ x3(t) ≥ δ

for all x(0) ∈ R
3
+ with x3(0) > 0.

Proof. This is an immediate consequence of [13, Lemma 4.4] for the general Lotka–
Volterra equation (1.1). The lemma shows that if (1.1) is dissipative and there exists
i ∈ {1, 2, . . . , n} such that ri + (Ax∗)i > 0 holds for all equilibrium points x∗ ∈ R

n
+

with x∗
i = 0, then there exists a positive number δ > 0 such that lim inft→∞ xi(t) ≥ δ

for all x(0) ∈ R
n
+ with xi(0) > 0. Since the face x3 = 0 of our specific system has

no equilibrium points except 0 and ẋ3/x3|0 > 0, the conclusion of this proposition
follows.

Theorem 5.7. (i) F3 attracts all points x ∈ R
3
+ with x3 > 0 if ξ2 > 0.

(ii) F123 attracts all positive points x ∈ R
3
+ if ξ1 > 0 and ξ2 < 0.

(iii) F13 (resp., F23) attracts all points x ∈ R
3
+ with x1 > x2 (resp., x2 > x1)

and x3 > 0 if ξ1 < 0 and ξ2 < 0.

Proof. Consider case (i). Then there exists a small ε > 0 such that s1
c ξ2 + ε < 0.

Let x(0) ∈ R
3
+ with x3(0) > 0. Since ẋ3 ≤ x3(s2 − cx3), there exists a T > 0 such

that x3(t) ≤ s2
c + ε

α for all t ≥ T . Then ẋi ≤ xi(
s1
c ξ2+ ε), i = 1, 2, holds for all t ≥ T .

This implies xi(t) → 0, i = 1, 2, as t → ∞. In case (ii), the matrix A is VL-stable
(see section A.1). In fact, DA + A�D is negative definite for D = diag{−β,−β, α}.
Therefore F123 attracts all positive points.

Consider case (iii). Let x(0) ∈ R
3
+ with x1(0) > x2(0) and x3(0) > 0. If x2(0) =

0, then the dynamics is reduced to a two-dimensional Lotka–Volterra predator-prey
system. Therefore, the conclusion clearly holds (see the proof of Theorem 5.5). Let us
assume x2(0) > 0. Suppose that ω(x(0)) intersects with the x3-axis. By Proposition
5.6, ω(x(0)) does not include 0. Furthermore, since ẋ1/x1|F3 > 0, ẋ2/x2|F3 > 0, and
the stable manifold of F3 is contained in the x3-axis, ω(x(0)) must include a point
on the x3-axis different from F3. But it is impossible since the ω-limit set of any
bounded orbit is compact and invariant. Therefore ω(x(0)) does not intersect with
the x3-axis. This result with Propositions 5.3 and 5.6 implies that there exist positive
numbers δ > 0 and D > 0 such that δ ≤ x1(t) + x2(t) ≤ D and δ ≤ x3(t) ≤ D for all
t ≥ 0. Using the function P (x) defined in the proof of Theorem 5.5(iii)–(iv), we can
show that ω(x(0)) is contained in Ω = {x ∈ R

3
+ : δ ≤ x1 ≤ D, x2 = 0, δ ≤ x3 ≤ D}.

Since ω(x(0)) is invariant, we can conclude that ω(x(0)) = {F13}. The same method
is applicable to the case where x2(0) > x1(0) holds.

In Figure 5.5, typical phase portraits for x3 > 0 are projected to the face x3 = 0
since ω(x) with x3 > 0 does not intersect with the face x3 = 0. In this predator-prey
case, the dynamics on M is always consistent with that on R

3
+\M . This is due to

the lack of nonequilibrium dynamics of the prey species. Since the population density
of species 2 equilibrates at F3 if it is isolated from species 1, the initial increase of
invading species 1 is irrespective of its age-structure. Therefore the dynamics on M
predicts the survival possibility of species 1. It is worth noting that the nonequilibrium
coexistence observed when ξ1 < 0 is found in an analogous age-structured model in [1].
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ξ1 > 0 ξ1 < 0

ξ2 ξ2

F3

F13 F23

F123

0 0

Fig. 5.5. The typical phase portraits for the predator-prey case. Each region contains a typical
phase portrait. An equilibrium point is represented by a closed dot • if it is asymptotically stable;
by an open dot ◦ if it is repelling; by an intersection of hyperbolic manifolds if it is a saddle.

5.4. Formulas in terms of the original parameters. Although all results
given above are expressed in terms of the parameters of the Lotka–Volterra equations,
some of them can be formulated in terms of the original parameters. In fact, as shown
earlier in section 5, the parameters a, b, c, α, β are expressed by those of the original
coupled Leslie matrix model. Since the Lotka–Volterra equation (1.1) with (3.2) is
derived by taking the limit h → 0, which implies Ri

0 → 1, it is reasonable to assume
that the parameters satisfy the constraint σi

1(0)σ
i
2(0) · · ·σi

ni
(0) = 1. For instance, the

condition for strong interclass competition, i.e., ξ1 < 0, is expressed as follows:

ξ1 = −(k11 + k22) + k21 + k12

=

√
1/σ1

1(0)√
σ1
1(0) +

√
1/σ1

1(0)
(−b11 − b22σ

1
1(0) + b21 + b12σ

1
1(0)) < 0.

If we define

ρ :=
b21 + b12σ

1
1(0)

b11 + b22σ1
1(0)

,

then ξ1 < 0 is rewritten as ρ > 1. ρ is introduced by Cushing [5] to measure the
intensity of interclass competition relative to the intensity of intraclass competition
in a semelparous population. Similarly, the parameters ξ2 and ξ3 are expressed as
follows:

ξ2 = −2b33 + (b13 + b23)
s2
s1

,

ξ3 =

√
1/σ1

1(0)√
σ1
1(0) +

√
1/σ1

1(0)

{
−b11 − b22σ

1
1(0) + (b31 + b32σ

1
1(0))

s1
s2

}
.

Furthermore, by definition, the ratio s2/s1 is given by

s2
s1

=
lnσ2

1(0)σ
2
1(0)

lnσ1
1(0)σ

1
2(0)

.
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These formulas can be used to formulate coexistence conditions. As mentioned in
each subsection, interesting inconsistencies of the population dynamics between un-
structured and structured systems occur only when ρ > 1. So, we focus on the case
ρ > 1 below. In the competitive case, Figure 5.1 shows that coexistence of two species
is achieved when ξ2 > 0 and ξ3 > 0 are fulfilled. These conditions imply

(b13 + b23)× (b31 + b32σ
1
1(0)) < (b11 + b22σ

1
1(0))× 2b33.

The left- and right-hand sides represent the intensities of inter- and intraspecific com-
petitions, respectively. Note that b13+ b23 < 0, b31+ b32σ

1
1(0) < 0, b11+ b22σ

1
1(0) < 0,

and b33 < 0, although all bij ’s are not necessarily negative. A characteristic of this
inequality is that terms corresponding to the intensity of interclass competition of
species 1 do not appear in the right-hand side. This is because one of the cohorts of
species 1 is eliminated if ρ > 1. In the cooperative case, coexistence is achieved if
ac > αβ, which is equivalent to the above inequality. In the prey-predator case (i.e.,
(α, β) = (−,+), (s1, s2) = (+,−)), the predator can persist if ξ3 < 0, i.e.,

−s2
s1

<
b31 + b32σ

1
1(0)

−(b11 + b22σ1
1(0))

,

where b11 + b22σ
1
1(0) < 0 and b31 + b32σ

1
1(0) > 0. This inequality shows that the

amount of benefit from species 1 to species 2 relative to the intensity of interspecific
competition of species 1 is larger than some threshold. Similarly to the competitive
case, terms corresponding to the intensity of interclass competition of species 1 do
not appear in the formula.

6. Concluding remarks. We advanced the work by Diekmann and van Gils
[10] and derived a Lotka–Volterra equation with a certain symmetry from a coupled
nonlinear Leslie matrix model for multiple species. In [10], their n-dimensional Lotka–
Volterra equation for a single species is further reduced to a replicator equation on
Sn = {x ∈ R

n
+ : x1+x2+· · ·+xn = 1}, and the dynamics is reduced by one dimension.

This reduction relies on the property that all intrinsic growth rates ri are identical
since their model consists of a single species (see also [14, Exercise 7.5.2]). Since our
system (1.1) with (3.2) consists of multiple species, this reduction is not applicable,
although the special case s1 = s2 = · · · = sN leads to a replicator equation.

The multispecies model (2.1) necessarily leads us to consider not only the case
Ri

0 > 1 but also the case Ri
0 < 1 since Ri

0 < 1 does not simply imply the extinction
of species i. In fact, the two examples in section 5.3 show that the species with
si < 0 can survive with the help of the other species. Since (1.1) with (3.2) is a valid
approximation only if Ri

0 ≈ 1, it is not valid for models with quick behavior such
as the Nicholson–Bailey host-parasitoid model, in which the parasitoid population
density becomes zero immediately if there are no host individuals. In the paper by
Beddington and Free [1], we can find such a predator-prey model with an age-structure
in the predator population. Furthermore, we can find that our approximate model
reproduces one of the characteristic behaviors observed in [1], i.e., the 2-cycle, in
which young and old predators occur in alternate time periods. This suggests that
even though Ri

0 ≈ 1 is a strong assumption, the classification of (1.1) with (3.2)
provides a catalogue of possible behaviors of age-structured models for interacting
species.

A special case of the Lotka–Volterra equation (1.1) with (3.2) was analyzed in de-
tail. The special case assumes that the system is composed of two species, one species



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

712 RYUSUKE KON

having two age-classes and the other species having a single age-class. The analysis
completely describes its global dynamics except in the case where the parameters sat-
isfy certain algebraic equations. In this analysis, several mathematical theories and
facts on Lotka–Volterra equations, such as the VL-stability theory, the Liapunov func-
tion for symmetric interaction matrices, and the topological equivalence to a replicator
dynamics, are used. They are still applicable to our approximate system even if its
dimension is more than three. Therefore, as seen in the three-dimensional examples,
a vast amount of knowledge on Lotka–Volterra equations would help to understand
the role of age-structures in more complex ecosystems.

Appendix A. In this appendix, we briefly introduce some general theories used
in the main body of the manuscript.

A.1. VL-stability. A square matrix A is said to be VL-stable if there exists a
positive diagonal matrixD > 0 such that the symmetric matrixDA+A�D is negative
definite, i.e., if there exist positive numbers di > 0 such that∑

i

∑
j

diaijxixj < 0

for all x �= 0 [14]. The VL-stable matrix is called an Sw-matrix in [20, 21] and
dissipative in [17].

Theorem A.1 (see [21, Theorem 1]). If A is VL-stable, then for every ri ∈ R

system (1.1) has a globally asymptotically stable equilibrium point x∗; i.e., x∗ is stable
in R

n
+ and attracts all solutions with the initial conditions x(0) ∈ R

n
+ satisfying

xi(0) > 0 for all i ∈ supp(x∗).

A.2. Internally chain transitive sets. Let X be a metric space with metric d
and Φ(t) : X → X , t ≥ 0 be a continuous semiflow. A nonempty invariant set M ⊂ X
for Φ(t) (i.e., Φ(t)M = M , t ≥ 0) is said to be internally chain transitive if, for any
a, b ∈ M and any ε > 0, t0 > 0, there is a finite sequence {x1 = a, x2, . . . , xm−1, xm =
b; t1, . . . , tm−1} with xi ∈ M and ti ≥ t0, 1 ≤ i ≤ m−1, such that d(Φ(ti, xi), xi+1) < ε
for all 1 ≤ i ≤ m− 1.

Theorem A.2 (see [11, Lemma 2.1’]). The ω-limit set of any precompact orbit
is internally chain transitive.
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