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Periodical cicadas are known for their unusually long life cycle for insects and their prime periodicity
of either 13 or 17 years. One of the explanations for the prime periodicity is that the prime periods are
selected to prevent cicadas from resonating with predators with submultiple periods. This paper considers
this hypothesis by investigating a population model for periodical predator and prey. The study shows that
if the periods of the two periodical species are not coprime, then the predator cannot resist the invasion of
the prey. On the other hand, if the periods are coprime, then the predator can resist the invasion of the prey.
It is also shown that if the periods are not coprime, then the life-cycle resonance can induce a permanent
system, in which no cohorts are missing in both populations. On the other hand, if the periods are coprime,
then the system cannot be permanent.
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1. Introduction

‘An insect population is said to be periodical if the life cycle has a fixed length of k years (k > 1)
and if the adults do not appear every year but only every kth year’ [2]. Periodical cicadas (Magi-
cicada spp.), inhabiting the Eastern United States, are examples of periodical insects. Nymphs
of periodical cicadas spend underground for precisely 17 years in the North and 13 years in the
South before emerging from the ground. Adult individuals spend the last few weeks of their life
aboveground to mate, lay eggs and die (see [12,27,28,33] for the details).

In addition to the perfect periodicity, the prime periodicity is an intriguing characteristic of
periodical cicadas. Seventeen and 13 are prime numbers. There are two dominant hypotheses
explaining this prime periodicity. The first hypothesis is due to a hypothetical predator (or par-
asitoid). Lloyd and Dybas [28] suggest that parasitoids may have played a role in evolution of
periodical cicadas from protoperiodicities to prime periodicities to escape from parasitoids with
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856 R. Kon

submultiple periods of dormancy. Also in [11], the advantage of prime periodicities to escape
from natural enemies with cycles is suggested (see also [29]). Based on this idea, Webb [32]
constructed mathematical models and gave a numerical example that predators with 2- or 3-year
cycles eliminate nonprime number periodical cicadas (see also Davydova [8] for an analogous
hypothesis proposing that prime periodicities are selected to escape from competition with short-
living periodical cicadas). The second hypothesis was proposed by Cox and Carlton [3,4]. They
argue that prime periodicities are selected to avoid coemergence and hybridization with periodical
cicadas with different periods since the hybridization disrupts their perfect periodicities and pro-
duces stragglers, which are eliminated by predators or by reduced mating opportunities. This idea
is advanced byYoshimura [34] and is illustrated by numerical experiments in [31,35]. However, as
pointed out by Lehmann-Ziebarth et al. [26], ‘a difficulty of this explanation is that prime-period
phenotypes might in fact be more likely to hybridize; if, for example, 12- and 13-year phenotypes
co-occur, they will emerge together at least within 156 years, while 12- and 14-year phenotypes
will never emerge together if they initially emerge 1 year apart’. The hybridization hypothesis
only takes into account certain cohorts initially coemerging.

A similar weak point can be seen in a mathematical model in [32]. The model assumes that

(S1) the predator dynamics is independent of the cicada dynamics;
(S2) periodical cicadas initially emerge when periodically oscillating predators are abundant (i.e.

only certain cohorts of periodical cicadas are considered).

Although these assumptions contribute to simplifying model equations, we might obtain a different
outcome if the assumptions are relaxed. If (S2) is not assumed, then periodical cicadas could never
emerge when predators are abundant. For instance, consider a 12-year periodical cicada and a
periodically oscillating predator with a 2-year period. If the cicada initially avoids a year when the
predator is abundant, then the cicada will never emerge in the abundant years. But the emergence
in the abundant years is inevitable for prime number periodical cicadas. Therefore, nonprime
number periodical cicadas could have an advantage. If both (S1) and (S2) are not assumed, we
cannot simply conclude that nonprime number periodical cicadas are selected for since a phase
shift of predators might occur in response to the periodical cicada dynamics. The aim of this paper
is to examine this aspect of the predator-resonance hypothesis by using a mathematical model
without assuming (S1) and (S2) and to show that the mechanism proposed in [11,28] does not
work to explain the advantage of prime number periodical cicadas.

For this purpose, we need to assume that there exists a predator (or parasitoid) whose influence to
periodical cicadas is periodic. In order to emphasize the essential point of the mechanism proposed
in [11,28], we assume a simple hypothetical predator with periodic influence to periodical cicadas.
More precisely, we assume a hypothetical predator (or parasitoid) that is periodical in the sense of
Bulmer [2] and attacks only cicadas aboveground. This hypothetical predator produces periodic
predation pressure on periodical cicadas. It is unlikely that such a predator exists and it is unclear
that such a predator has existed. But if such a hypothetical predator cannot explain the advantage
of prime number periodical cicadas, then we see that a new mechanism that is not involved in the
mechanism proposed in [11,28] is necessary.

The following is the outline of how we derive the conclusion that prime periodicities are
not advantageous even under periodic predation pressure. In Section 2, we construct an age-
structured model for dynamically interacting prey and predator without assuming (S1) and (S2).
The predator–prey model is described by a discrete-time coupled Leslie matrix model. Since the
prey corresponds to periodical cicadas, the prey is assumed to be semelparous. Furthermore, the
prey is assumed to be periodical if it is isolated from its hypothetical predator. This means that
prey’s perfect periodicity is maintained by some mechanism that is not due to the hypothetical
predator. For instance, satiation of predators (such as birds) and severe inter-class competition can
maintain prey’s perfect periodicity (e.g. see [2,18]).As mentioned above, the hypothetical predator
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is also assumed to be periodical. This also means that predator’s perfect periodicity is maintained
by some mechanism that is not due to its prey. Furthermore, the predator is assumed to be semel-
parous since if non-semelparous periodical species is unlikely [23]. In Section 3, the discrete-time
model is reduced to a certain Lotka–Volterra differential equation, which will be studied in the
subsequent sections. Section 4 provides a mathematical condition ensuring that both the predator
and the prey are periodical in terms of Lotka–Volterra equations. Section 5 provides some miscel-
laneous things that are necessary and helpful in the subsequent sections. Sections 6 and 7 evaluate
the advantage of prime number periodical cicadas. For this evaluation, we consider the invasibility
of the periodical prey to the environment with the hypothetical periodical predator. Furthermore,
we study the dynamics after successful prey invasion. Section 6 focuses on the asynchronous case
where the life-cycle durations of the prey and the predator, say n1 and n2, are coprime, i.e. the
greatest common divisor of n1 and n2 is 1. In this case, it is shown that the periodical predator
can resist the invasion of the periodical prey (see Theorem 6.2). Furthermore, it is shown that the
predator–prey system is never permanent (see Theorem 6.3). Section 7 considers the case where n1

and n2 are not coprime. In this case, it is shown that, with the help of a well-timed cohort of itself,
the periodical prey can always invade the system with the periodical predator (see Theorem 7.1).
To illustrate the fate after the invasion, we focus on the case n1 = n2 = 2, and observe interesting
phenomena due to life-cycle resonances. Especially, we find that permanence of predator–prey
systems is induced by life-cycle resonances (see Theorems 7.14 and 7.15). The last section includes
concluding remarks. Some mathematically technical parts are contained in the appendices.

2. Model

In this section, we construct an age-structured predator–prey model to study the dynamic interac-
tion between a periodical cicada species and its hypothetical predator (or parasitoid). We assume
that the prey consists of n1 ≥ 1 discrete age-classes and the predator consists of n2 ≥ 1 discrete age-
classes. Let u = (u1, u2, . . . , un1 )T and v = (v1, v2, . . . , vn2 )T be the population vectors for the prey
and the predator, respectively. Then ui (resp. vi) denotes the population density of the prey (resp.
predator) of age i. For convenience, let n: = n1 + n2. We construct a dynamical system on the n-
dimensional nonnegative cone R

n+ := {z = (z1, z2, . . . , zn)
T ∈ R

n : z1 ≥ 0, z2 ≥ 0, . . . , zn ≥ 0}.
The time evolution of the population vectors follows the system of difference equations:

u(t + 1) = Ln1 [σ1, σ2, . . . , σn1 ]u(t),

v(t + 1) = Ln2 [τ1, τ2, . . . , τn2 ]v(t),
(1)

where

Li[l1, l2, . . . , li] :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 li
l1 0 · · · 0 0
0 l2 · · · 0 0
...

...
. . .

...
...

0 0 · · · li−1 0

⎞
⎟⎟⎟⎟⎟⎠ .

The matrix Li is a special case of the Leslie matrix. σ i, i ∈ {1, 2, . . . , n1 − 1} (resp. τ i,
i ∈ {1, 2, . . . , n2 − 1}) denotes the survival probability of age-class i of the prey (resp. preda-
tor). σ n1 (resp. τ n2 ) denotes the fertility of the prey (resp. predator). The sign pattern of the first
row of Li reflects the assumption of semelparity.

To include the interplay between the prey and the predator, the vital rates σ i and τ i are assumed
to be the functions defined by

σi := σi((B11u)i + (B12v)i) and τi := τi((B21u)i + (B22v)i),
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858 R. Kon

where each Bij is a constant matrix with an appropriate size and a vector with a subscript, say
i, denotes the ith component of the vector (e.g. (B11u)i denotes the ith component of the vector
B11u). Bij may include a negative entry. For convenience, define

B = (bij ) :=
(

B11 B12

B21 B22

)
.

This matrix determines the age-specific species-interaction between the prey and the predator.
The diagonal and the off-diagonal blocks determine types of intra- and inter-specific interactions,
respectively. The diagonal and the off-diagonal entries of Bii determine types of conspecific intra-
and inter-class interactions, respectively. To remove the ambiguity, we assume that

(H1) σ i and τ i are increasing functions.

Then B12 is nonpositive and B21 is nonnegative since the first species is a prey and the second
species is a predator. This paper considers more special predator–prey interaction: two species
meet only after they mature. Such an interaction is realized if the prey is a cicada and the predator
is a parasitoid whose adult individuals attack adult cicadas (or cicada eggs) aboveground (note
that σ n1 can be interpreted as a product of fertility of adult cicadas and survival probability of
cicada eggs if timing of census is just after egg hatching). The interaction can be expressed by
assuming that both B12 and B21 have unique nonzero entries bn1n < 0 and bnn1 > 0, respectively.
bn1n < 0 implies that σ n1 is reduced by the predator of age n2. bnn1 > 0 implies that τ n2 is enhanced
by the prey of age n1. It is further assumed that all interactions within a species are competitive,
i.e. all entries of B11 and B22 are negative. The assumptions on B are summarized as follows:

(H2)

B11 < 0, B22 < 0, B12 =

⎛
⎜⎜⎜⎝

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 −

⎞
⎟⎟⎟⎠ and B21 =

⎛
⎜⎜⎜⎝

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 +

⎞
⎟⎟⎟⎠ .

The basic reproduction number of the prey is

R1
0 := σ1(0)σ2(0) · · · σn1(0).

This number represents the expected number of offspring that a single prey individual reproduces
per lifetime when all density-dependent effects are ignored [5,7]. Similarly, the basic reproduction
number of the predator is

R2
0 := τ1(0)τ2(0) · · · τn2(0).

In this paper, it is assumed that

(H3) R1
0 > 1 and R2

0 > 1.

This assumption implies that two species can persist when they are isolated from each other (see
[25]). The reason why these inequalities are assumed is the following. Periodical cicadas are
unreliable resources for a predator aboveground since they are not available between emergence
years. Hence it is unlikely that the hypothetical predator attacking cicadas aboveground utilizes
periodical cicadas as an essential resource. Therefore, we assume that the predator does not
perfectly rely on the prey and mainly relies on some other resources that are not explicitly expressed
in Equation (1). This assumption leads to the inequality R2

0 > 1, i.e. the predator is self-supporting.
Furthermore, since we are not interested in the case where the prey is always eliminated from the
system, it is assumed that the prey is also self-supporting, i.e. R1

0 > 1.
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3. Lotka–Volterra equations for semelparous populations

In this section, following the procedure given in [22], we derive a Lotka–Volterra differential
equation from Equation (1) (see also [10]). To this end, we need to assume that

(H4) σ 1, σ 2, . . . , σ n1 and τ 1, τ 2, . . . , τ n2 are continuously differentiable;
(H5)

σi(0) > 0 and
1

σi(0)

dσi(x)

dx

∣∣∣∣
x=0

= 1 for all i ∈ {1, 2, . . . , n1},

τj (0) > 0 and
1

τj (0)

dτj (x)

dx

∣∣∣∣
x=0

= 1 for all j ∈ {1, 2, . . . , n2}.

The assumption (H5) is introduced to normalize the functions σ i and τ i. For instance, σi(x) =
σ 0

i exp(x) and τi(x) = τ 0
i exp(x) with positive constants σ 0

i > 0 and τ 0
i > 0 satisfy (H4) and (H5)

in addition to (H1).
Let m be the least common multiple of n1 and n2. Then within m time steps the prey and the

predator experience m/n1 and m/n2 generations, respectively. Hence, (R1
0)

m/n1 (resp. (R2
0)

m/n2 )
denotes the expected number of descendants of a single prey (resp. predator) individual after m
time steps when all density-dependent effects are ignored. Let s1, s2 ∈ R be numbers satisfying

m

s1n1
log R1

0 = m

s2n2
log R2

0 > 0.

Note that such numbers are not unique but exist. By (H3), both s1 and s2 are positive. Define h by

h := (m/s1n1) log R1
0. By definition, h = 0 if R1

0 = R2
0 = 1. Let λi := ni

√
Ri

0 = esih/m, i = 1, 2.
Then λ1 and λ2 are eigenvalues of the nonnegative irreducible matrices

Ln1 [σ1(0), σ2(0), . . . , σn1(0)] and Ln2 [τ1(0), τ2(0), . . . , τn2(0)],
respectively. Let d1 = (d1, d2, . . . , dn1 )T > 0 and d2 = (dn1+1, dn1+2, . . . , dn1+n2 )T > 0 be right
eigenvectors associated with λ1 and λ2, respectively. By the Perron–Frobenius theorem, we
can choose positive d1 and d2. We normalize them by assuming d1 + d2 +· · · + dn1 = 1 and
dn1+1 + dn1+2 +· · · + dn1+n2 = 1. Define

D1 :=

⎛
⎜⎜⎜⎝

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn1

⎞
⎟⎟⎟⎠ and D2 :=

⎛
⎜⎜⎜⎝

dn1+1 0 · · · 0
0 dn1+2 · · · 0
...

...
. . .

...

0 0 · · · dn1+n2

⎞
⎟⎟⎟⎠ .

We rescale Equation (1) with the new vectors x = (1/h)D−1
1 u and y = (1/h)D−1

2 v. Then
Equation (1) can be rewritten as follows:

x(t + 1) = es1h/mLn1

[
σ1(h{(B11D1x(t))1 + (B12D2y(t))1})

σ1(0)
,

σ2(h{(B11D1x(t))2 + (B12D2y(t))2})
σ2(0)

,

. . . ,
σn1(h{(B11D1x(t))n1 + (B12D2y(t))n1})

σn1(0)

]
x(t), (2)
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860 R. Kon

y(t + 1) = es2h/mLn2

[
τ1(h{(B21D1x(t))1 + (B22D2y(t))1})

τ1(0)
,

τ2(h{(B21D1x(t))2 + (B22D2y(t))2})
τ2(0)

,

. . . ,
τn2(h{(B21D1x(t))n2 + (B22D2y(t))n2})

τn2(0)

]
y(t).

Note that x(t + 1) → Ln1 [1, 1, . . . , 1]x(t) and y(t + 1) → Ln2 [1, 1, . . . , 1]y(t) as h → 0. Because
of the cyclicity of Ln1 and Ln2 , we have the following equation:

xi(t + m) = xi(t) es1h

m−1∏
j=0

σj+i (h{(B11D1x(t + j))j+i + (B12D2y(t + j))j+i})
σj+i (0)

,

i = 1, 2, . . . , n1,

yi(t + m) = yi(t) es2h

m−1∏
j=0

τj+i (h{(B21D1x(t + j))j+i + (B22D2y(t + j))j+i})
τj+i (0)

,

i = 1, 2, . . . , n2,

(3)

where the additions in the subscripts in the first and the second equations are understood modulo
n1 and n2, respectively. Then, by L’Hôpital’s rule, as h → 0

xi(t + m) − xi(t)

h
→ xi(t)

⎛
⎝s1 +

m−1∑
j=0

(B11D1P
j

1 x(t))j+i +
m−1∑
j=0

(B12D2P
j

2 y(t))j+i

⎞
⎠ ,

yi(t + m) − yi(t)

h
→ yi(t)

⎛
⎝s2 +

m−1∑
j=0

(B21D1P
j

1 x(t))j+i +
m−1∑
j=0

(B22D2P
j

2 y(t))j+i

⎞
⎠ ,

where P1: = Ln1 [1, 1, . . . , 1], P2: = Ln2 [1, 1, . . . , 1] and the additions in the subscripts in the first
and the second equations are understood modulo n1 and n2, respectively. Hence, formally, from
the map (1) we obtain:

ẋi = xi(s1 + (A11x)i + (A12y)i), i = 1, 2, . . . , n1,

ẏi = yi(s2 + (A21x)i + (A22y)i), i = 1, 2. . . . , n2,
(4)

where the matrix Aij is the (i, j)-block of the partitioned interaction matrix

A = (aij ) =
(

A11 A12

A21 A22

)

given by

A = K + P −1KP + (P −1)2KP 2 + · · · + (P −1)m−1KP m−1, (5)

where K = BD,

P =
(

P1 0
0 P2

)
and D =

(
D1 0
0 D2

)
.

Note that P1 and P2 are permutation matrices corresponding to cyclic permutations. By (H2), A11

and A22 are negative, A12 is nonpositive and A21 is nonnegative. Moreover A12 and A21 are nonzero
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since B12 and B21 are nonzero. Since the diagonal blocks of P correspond to cyclic permutations,
the diagonal blocks of A are circulant. Therefore, for convenience, we write

A11 =

⎛
⎜⎜⎜⎝

−c1 −c2 · · · −cn1

−cn1 −c1 · · · −cn1−1
...

...
. . .

...

−c2 −c3 · · · −c1

⎞
⎟⎟⎟⎠ ,

A22 =

⎛
⎜⎜⎜⎝

−cn1+1 −cn1+2 · · · −cn1+n2

−cn1+n2 −cn1+1 · · · −cn1+n2−1
...

...
. . .

...

−cn1+2 −cn1+3 · · · −cn1+1

⎞
⎟⎟⎟⎠ ,

where c1, c2, . . . , cn1+n2 = cn are positive.
For convenience, let

z = (z1, z2, . . . , zn)
T = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2)

T.

Define supp(z): ={i:zi > 0}. The right-hand side of Equation (3) can be seen as a map of z(t).
Denote the map by G. The following lemma shows that the equilibrium points of the map z �→
G(z) are inherited by Equation (4) with Equation (5).

Lemma 3.1 Let z∗ ∈ R
n+ be an isolated equilibrium point of Equation (4) with Equation (5). Then

there exist a constant h1 > 0, a neighbourhood U ⊂ R
n+ of z∗ and a unique continuous function

ζ :[0, h1) → U such that ζ (h) is an equilibrium point of the map z �→ G(z),supp(ζ (h)) = supp(z∗)
for h ∈ [0, h1) and ζ (0) = z∗.

Proof Suppose that z∗ is a positive equilibrium point of Equation (4) with Equation (5). Then
z∗ satisfies

r + Az∗ = 0,

where

r = (s1, s1, . . . , s1︸ ︷︷ ︸
n1

, s2, s2, . . . , s2︸ ︷︷ ︸
n2

)T.

Since z∗ is isolated, det A �= 0. Let z(t) be a solution of Equation (2) with z(0) = z. Define
f : R

n+ × R → R
n1 and g : R

n+ × R → R
n2 by

fi(z, h) :=

⎧⎪⎨
⎪⎩

1

h

{
es1h

m−1∏
j=0

σj+i (h{(B11D1x(t + j))j+i + (B12D2y(t + j))j+i})
σj+i (0)

− 1

}
, h �= 0,

s1 + (A11x)i + (A12y)i, h = 0

and

gi(z, h) :=

⎧⎪⎨
⎪⎩

1

h

{
es2h

m−1∏
j=0

τj+i (h{(B21D1x(t + j))j+i + (B22D2y(t + j))j+i})
τj+i (0)

− 1

}
, h �= 0,

s2 + (A21x)i + (A22y)i, h = 0.

Define G : R
n+ × R → R

n by G = (G1, G2, . . . , Gn)T: = (f1, f2, . . . , fn1 , g1, g2, . . . , gn2 )T. It is
clear that G(z∗, 0) = 0 and G is continuous. We see that a positive ζ ∈ R

n+ satisfying G(ζ , h) = 0
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862 R. Kon

with h > 0 is a positive equilibrium point of the map z �→ G(z). Furthermore, we see that for each
i, j ∈ {1, 2, . . . , n}, ∂Gi/∂zj is continuous and

∂Gi

∂zj

∣∣∣∣
z=z∗,h=0

= aij .

Since det A �= 0, the Jacobi matrix (∂Gi/∂zj)|z=z∗, h=0 is nonsingular. By the implicit function
theorem, the desired function ζ exists.

Suppose that z∗ is not positive. Then z∗ is a positive equilibrium point of some subsystem of
Equation (4) with Equation (5). Hence, if we repeat the above argument for the subsystem, then
we can construct the desired function ζ . We omit the detail. �

Suppose that z∗ ∈ R
n+ is an isolated equilibrium point of Equation (4) with Equation (5) sat-

isfying z∗ = Plz∗ and z∗ �= Pjz∗, 0 < j < l. By Lemma 3.1, the map z �→ G(z) has an equilibrium
point ζ (h) that ζ (h) → z∗ as h → 0 and supp(ζ (h)) = supp(z∗). Since the map (2) approaches
z(t + 1) = Pz(t) as h → 0, ζ (h) is an l-periodic point of Equation (2). Therefore, z∗ corresponds
to an l-periodic point of Equation (1).

The prey (resp. predator) has potentially n1 (resp. n2) reproductively isolated cohorts, and each
of them is represented by one of the components of x (resp. y). If the unit of time of Equation (1)
is a year, each component of x (resp. y) corresponds to the population density of a year-class of
the prey (resp. predator).

Finally, we prove that Equation (5) remains unchanged even if we interchange the variables
x1, x2, . . . , xn1 and y1, y2, . . . , yn2 according to the permutation matrix P (cf. [10, Lemma 2.1]).

Lemma 3.2 If z(t) is a solution of Equation (4) with Equation (5), then Pz(t) is also a solution
of the same equation.

Proof Since P and A commute (i.e. AP = PA), we have A11P1 = P1A11, A12P2 = P1A12,
A21P1 = P2A21 and A22P2 = P2A22. This property leads to

(P1ẋ)i = ẋi−1 = xi−1(s1 + (A11x)i−1 + (A12y)i−1)

= (P1x)i(s1 + (P1A11x)i + (P1A12y)i)

= (P1x)i(s1 + (A11P1x)i + (A12P2y)i), i = 1, 2, . . . , n1,

where the subtractions of the subscripts are understood modulo n1. Similarly, we can show that

(P2ẏ)i = (P2y)i(s2 + (A21P1x)i + (A22P2y)i), i = 1, 2, . . . , n2.

This shows that Pz(t) is a solution of Equation (4) with Equation (5). �

4. Perfect periodicity

In this section, we introduce the assumption ensuring that both the prey and the predator are peri-
odical, i.e. their population dynamics have perfect periodicities. Mathematically, we are interested
in the case where both the subsystems u = 0 and v = 0 of Equation (1) have stable periodic orbits
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with the following sign pattern:⎛
⎜⎜⎜⎝

+
0
...

0

⎞
⎟⎟⎟⎠ −→

⎛
⎜⎜⎜⎝

0
+
...

0

⎞
⎟⎟⎟⎠ −→ · · · −→

⎛
⎜⎜⎜⎝

0
0
...

+

⎞
⎟⎟⎟⎠ −→

⎛
⎜⎜⎜⎝

+
0
...

0

⎞
⎟⎟⎟⎠ .

By (H2) and (H3), each axis of Equation (4) with Equation (5) has a unique nonzero equilibrium
point. Let Fi, i = 1, 2, . . . , n1 (resp. Fj, j = 1, 2, . . . , n2), be the unique nonzero equilibrium point
on the xi-axis (resp. yj-axis). Then we have Fi+1 = PFi and Fj+1 = PFj, where the subscript and
the superscript are counted modulo n1 and n2, respectively. This shows that Fi and Fj are the
desired equilibrium points of Equation (4) if they are stable in the respective subsystems. The
stability conditions for Fi and Fj are given as follows:

Lemma 4.1 Each Fi, i = 1, 2, . . . , n1, is asymptotically stable in the subsystem y = 0 if and only if
c1 < cl for all l ∈ {2, 3, . . . , n1}. Each Fj, j = 1, 2, . . . , n2, is asymptotically stable in the subsystem
x = 0 if and only if cn1+1 < cn1+l for all l ∈ {2, 3, . . . , n2}.

Proof In the subsystem y = 0, Equation (4) is reduced to

ẋi = xi(s1 + (A11x)i), i = 1, 2, . . . , n1, (6)

where A11 is a circulant matrix as mentioned above. The subsystem has the equilibrium point
F̃1 = (s1/c1, 0, . . . , 0)T, which corresponds to F1 of the full system. The Jacobi matrix of Equation
(6) evaluated at F̃1 has the eigenvalues

−s1, s1

(
1 − c2

c1

)
, s1

(
1 − c3

c1

)
, . . . , s1

(
1 − cn1

c1

)
.

Hence F̃1 is asymptotically stable if c1 < cl for all l ∈ {2, . . . , n1}. Conversely, suppose that c1 ≥ cl

for some l ∈ {2, . . . , n1}. If c1 > cl, then one of the eigenvalues shown above is positive, and hence
F̃1 is unstable. Suppose c1 = cl. Then the subsystem of Equation (6) composed of x1 and xl is
given by

ẋ1 = x1(s1 − c1x1 − c1xl),

ẋl = xl(s1 − c2−lx1 − c1xl),
(7)

where 2 − l is understood modulo n1. If c1 = c2−l, then Equation (7) has a segment of equilibrium
points connecting (s1/c1, 0)T and (0, s1/c1)T. Hence F̃1 is not an asymptotically stable equilibrium
point of Equation (6). If c1 > c2−l, then one of the eigenvalues shown above is positive, and hence
F̃1 is unstable. If c1 < c2−l, then we can show that (0, s1/c1)T is an unstable equilibrium point of
Equation (7). In fact, the instability is shown as follows. Define

� := {(x1, xl)
T ∈ R

2
+ : s1 − c1x1 − c1xl > 0, s1 − c2−lx1 − c1xl < 0}.

Then � is forward invariant under Equation (7) and any neighbourhood of (0, s1/c1)T intersects
with �. Every solution in � is monotone (i.e. ẋ1 > 0, ẋl < 0) and converges to (s1/c1, 0)T. Hence
(0, s1/c1)T is an unstable equilibrium point of Equation (7). This means that F̃l is an unstable
equilibrium point of Equation (6). Consequently, by Lemma 3.2, F̃1 is also an unstable equi-
librium point of Equation (6). Furthermore, by Lemma 3.2, we can conclude that every F̃i ,
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864 R. Kon

i = 1, 2, . . . , n1, is an asymptotically stable equilibrium point of Equation (6) if and only if c1 < cl

for all l ∈ {2, 3, . . . , n1}. The same argument applies to the stability problem of Fj. �

Therefore, we need to assume that

(H6) c1 < ci for all i ∈ {2, 3, . . . , n1} and cn1+1 < cn1+i for all i ∈ {2, 3, . . . , n2}.
There are two ecological mechanisms stabilizing perfect periodicity. Hoppenstead and Keller
[18] showed that the combination of predator satiation and resource limitation stabilizes perfect
periodicity (see also [1,2,24,29]). Bulmer [2] showed that severe inter-class competition stabilizes
perfect periodicity and predation reinforces the tendency (e.g. see also [6,9,24]).Appendix 1 shows
that (H6) can be realized when inter-class competition is severe. However, note that, as shown in
[24], inter-class competition can be apparently severe if we take account of the effect of predators
with a certain functional response (e.g. birds for periodical cicadas).

5. Preliminaries

In this section, we provide some miscellaneous things that are necessary and helpful in the
subsequent sections.

The model equation that we examine in this paper is the Lotka–Volterra equation (4) that
possesses the interaction matrix (5) and satisfies the assumptions (H2), (H3) and (H6). For
convenience, the model is simply denoted by Equation (4)H.

Define intRn+ := {z ∈ R
n+ : z1 > 0, z2 > 0, . . . , zn > 0}, bdR

n+ := {z ∈ R
n+ : z1z2 · · · zn = 0}.

Let ω(z) be the ω-limit set of z ∈ R
n+. For a subset S ⊂ R

n+, define ω(S) := ⋃
z∈S ω(z). As

defined above, z = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2 )T and supp(z): ={i : zi > 0}. We identify zi with
xi if i ∈ {1, 2, . . . , n1} and zi with yi−n1 if i ∈ {n1 + 1, n1 + 2, . . . , n1 + n2}.
Definition 5.1 (a) The prey is said to be able to invade Fj, j = 1, 2, . . . , n2, if there exists an

index i ∈ {1, 2, . . . , n1} such that
ẋi

xi

∣∣∣∣
Fj

> 0.

(b) The predator is said to be able to invade Fi, i = 1, 2, . . . , n1, if there exists an index
j ∈ {1, 2, . . . , n2} such that

ẏj

yj

∣∣∣∣
Fi

> 0.

By Lemma 3.2, the prey can invade all F1, F2, . . . , Fn2 if and only the prey can invade one of
them. Similarly, the predator can invade all F1, F2, . . . , Fn1 if and only if the predator can invade
one of them. By (H6), Fj, j = 1, 2, . . . , n2, of Equation (4)H is asymptotically stable if ẋi/xi |Fj < 0
for all i ∈ {1, 2, . . . , n1}. Similarly, Fi, i = 1, 2, . . . , n1, of Equation (4)H is asymptotically stable if
ẏj /yj |Fi

< 0 for all j ∈ {1, 2, . . . , n2}. However, since s2 > 0 and A21 is nonnegative, ẏj /yj |Fi
> 0

holds for all j ∈ {1, 2, . . . , n2}. Therefore, the predator can always invade Fi, i = 1, 2, . . . , n1.
The dissipativity defined below ensures that the forward orbits of Equation (4) are eventually

bounded both below and above by constants independent of initial conditions.

Definition 5.2 Equation (4) is said to be dissipative if there exist constants δ1, δ2 ∈ R such that

δ1 < lim inf
t→∞ zi(t) ≤ lim sup

t→∞
zi(t) < δ2, i = 1, 2, . . . , n

for all z(0) ∈ R
n+.
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Lemma 5.3 Equation (4)H is dissipative.

Proof It is known that Equation (4) is dissipative if A is a B-matrix, i.e. for all z ≥ 0 with
z �= 0 there exists an i such that zi > 0 and (Az)i < 0 (see [16, Theorem 15.2.4]). Let z ≥ 0 with
z �= 0. Suppose that there exists an i ∈ {1, 2, . . . , n1} such that zi > 0. Then (Az)i ≤ (A11x)i < 0.
Suppose that zi = 0 for all i ∈ {1, 2, . . . , n1}. Then for i ∈ {n1 + 1, n1 + 2, . . . , n1 + n2}, zi > 0 and
(Az)i = (A22y)i−n1 < 0. Hence A is a B-matrix. �

As shown above, the predator can always invade Fi, i = 1, 2, . . . , n1. We can further show that
the predator can establish itself after invasion.

Lemma 5.4 Let z(t) be a solution of Equation (4)H. Then there exists a positive constant δ such
that

lim inf
t→∞ (y1(t) + y2(t) + · · · + yn2(t)) > δ > 0

for all z(0) ∈ R
n+ with y1(0) + y2(0) +· · · + yn2 (0) > 0.

Proof Using a theorem of average Liapunov functions, we shall prove this lemma. Let S = {z ∈
R

n+ : y1 + y2 + · · · + yn2 = 0}. Since Equation (4)H is dissipative, a theorem of average Liapunov
functions [19, Theorem 2.5] ensures that the conclusion of the lemma follows if there exists a
continuously differentiable function V : R

n+ → R+ such that

(i) V (z) = 0 if and only if z ∈ S;
(ii) there exists a continuous function ψ : R

n+ → R such that V̇ (z) ≥ V (z)ψ(z) for all z ∈ R
n+;

(iii) for any z(0) ∈ ω(S) there exists a T > 0 satisfying∫ T

0
ψ(z(t)) dt > 0.

Here, ω(S) is the closure of ω(S).

Define V : R
n+ → R+ by V (z) = y1 + y2 +· · · + yn2 . Then V is continuously differentiable and

satisfies (i). The time-derivative of V along a solution of Equation (4)H satisfies V̇ (z) ≥ V (z)ψ(z)
for the continuous function ψ(z) = minn2

i=1{s2 + (A21x)i + (A22y)i}. Since ψ(z) = minn2
i=1{s2 +

(A21x)i} > 0 for z ∈ S, (iii) is also satisfied. This completes the proof. �

The following lemma shows that if the two species are isolated, then the predator has the largest
total population density at Fj, j ∈ {1, 2, . . . , n2}. Clearly, the similar conclusion holds for the prey
species.

Lemma 5.5 Let z∗ = (x∗
1 , x∗

2 , . . . , x∗
n1

, y∗
1 , y∗

2 , . . . , y∗
n2

)T ∈ R
n+ be an equilibrium point of

Equation (4)H with x∗ = 0. Then

y∗
1 + y∗

2 + · · · + y∗
n2

≤ s2

cn1+1

with equality only when z∗ = Fj for j ∈ {1, 2, . . . , n2}.

Proof The equality clearly holds if z∗ = Fj for j ∈ {1, 2, . . . , n2}. Suppose that z∗ �= Fj for all
j ∈ {1, 2, . . . , n2}. If y∗ = 0, then the strict inequality clearly holds. If y∗ �= 0, then s2 − (A22y∗)i = 0
holds for i ∈ supp(y∗). By (H6), we have s2 − cn1+1(y

∗
1 + y∗

2 + · · · + y∗
n2

) > s2 − (A22y∗)i = 0.
This completes the proof. �
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866 R. Kon

The permanence defined below ensures that two species coexist and none of them have missing
cohorts.

Definition 5.6 Equation (4) is said to be permanent if there exist positive constants δ1 and δ2

such that

0 < δ1 < lim inf
t→∞ zi(t) ≤ lim sup

t→∞
zi(t) < δ2, i = 1, 2, . . . , n

for all z(0) ∈ intRn+.

Let M := {z ∈ R
n+ : x1 = x2 = · · · = xn1 and y1 = y2 =· · · = yn2}. In [22], it is shown that M

is forward invariant under Equation (4)H. Furthermore, it is shown that the dynamics on M obeys
the two-dimensional Lotka–Volterra predator–prey equation

˙|x| = |x|(s1 + ā11|x| + ā12|y|),
˙|y| = |y|(s2 + ā21|x| + ā22|y|), (8)

where |x|= x1 + x2 +· · · + xn1 , |y|= y1 + y2 +· · · + yn2 and the coefficients ā11, ā12, ā21 and ā22

are defined by

ā11 :=
∑n1

i=1

∑n1
j=1 aij

n2
1

= −
∑n1

i=1 ci

n1
,

ā12 :=
∑n1

i=1

∑n1+n2
j=n1+1 aij

n1n2
,

ā21 :=
∑n1+n2

i=n1+1

∑n1
j=1 aij

n1n2
,

ā22 :=
∑n1+n2

i=n1+1

∑n1+n2
j=n1+1 aij

n2
2

= −
∑n2

i=1 cn1+i

n2
.

By (H2), ā11 < 0, ā12 < 0, ā21 > 0, ā22 < 0 hold. It is known that if Equation (8) has a positive
equilibrium, it is globally asymptotically stable in intR2+ (see Lemma A.1).

6. Asynchronous life cycles

In this section, we consider the case where n1 and n2 are coprime, i.e. the greatest common divisor
of n1 and n2 is 1. In this case, the least common multiple of n1 and n2 is m = n1n2, and we can
prove the following lemma.

Lemma 6.1 Consider the interaction matrix A of Equation (4)H. If n1 and n2 are coprime, then
A12 = −αE and A21 =βE hold for

α := −
n1∑

i=1

n1+n2∑
j=n1+1

kij > 0, β :=
n1+n2∑

i=n1+1

n1∑
j=1

kij > 0

and

E :=
⎛
⎜⎝

1 · · · 1
...

...

1 · · · 1

⎞
⎟⎠ . (9)
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Proof Let γ 1 and γ 2 be the cyclic permutations(
1 2 . . . n1

2 3 . . . 1

)
and

(
n1 + 1 n1 + 2 . . . n1 + n2

n1 + 2 n1 + 3 . . . n1 + 1

)
,

respectively. By Equation (5), for i ∈ {1, 2, . . . , n1} and j ∈ {n1 + 1, n1 + 2, . . . , n1 + n2}

aij =
m−1∑
l=0

kγ l
1(i),γ l

2(j).

It is known that if n1 and n2 are coprime, then {n2, 2n2, . . . , n1n2} is a complete system of
incongruent residues (mod n1) (e.g. see [13, Theorem 56]). Using this result, we can show that

aij =
n2−1∑
l=0

(k
γ

l+n2
1 (i),γ

l+n2
2 (j)

+ k
γ

l+2n2
1 (i),γ

l+2n2
2 (j)

+ · · · + k
γ

l+n1n2
1 (i),γ

l+n1n2
2 (j)

)

=
n2−1∑
l=0

(kγ l
1(1),γ l

2(j) + kγ l
1(2),γ l

2(j) + · · · + kγ l
1(n1),γ

l
2(j))

=
n1∑

l1=1

n1+n2∑
l2=n1+1

kl1l2 .

Since all entries of A12 are identical, we have A12 = (
∑n1

l1=1

∑n1+n2
l2=n1+1 kl1l2)E. Similarly, we can

show that A21 = ∑n1+n2
l1=n1+1

∑n1
l2=1 kl1l2E. By (H2), α and β are positive. �

By the simple structure of A, we can obtain the following theorem.

Theorem 6.2 Consider Equation (4)H with coprime n1 and n2. Then the prey can invade Fj,
j ∈ {1, 2, . . . , n2}, if and only if s1 − s2α/cn1+1 > 0.

Proof By Lemma 3.2, it is sufficient to show that the prey can invade F1 if and only if
s1 − s2α/cn1+1 > 0. The conclusion follows since

ẋi

xi

∣∣∣∣
F 1

= s1 − α
s2

cn1+1

for any i ∈ {1, 2, . . . , n1}. �

This theorem implies that if n1 and n2 are coprime, then there is a possibility that the predator
can resist the invasion of the prey. This contrasts with the case where n1 and n2 are not coprime
(see Theorem 7.1). The following theorem shows what happens after the invasion of the prey.

Theorem 6.3 Suppose that n1 and n2 are coprime and s1 − s2α/cn1+1 > 0.

(a) Let z(t) be a solution of Equation (4)H. Then there exists a constant δ > 0 such that

lim inf
t→∞ (x1(t) + x2(t) + · · · + xn1(t)) > δ > 0

for all z(0) ∈ R
n+ with x1(0) + x2(0) +· · · + xn1 (0) > 0;

(b) For any i ∈ {1, 2, . . . , n1} and j ∈ {1, 2, . . . , n2}, Equation (4)H has an equilibrium point F
j

i

with supp(F
j

i ) = {i, n1 + j} and F
j

i is asymptotically stable.
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868 R. Kon

Proof (a) This case immediately follows from Theorem A.3 (see Appendix 3). In fact, by
Lemma 5.3, system (4) is dissipative and, by Lemma 5.5, s1 − α(y∗

1 + y∗
2 + · · · + y∗

n2
) ≥

s1 − αs2/cn+1 > 0 holds for all equilibrium points z∗ with x∗ = 0.
(b) Let i ∈ {1, 2, . . . , n1} and j ∈ {1, 2, . . . , n2}. On the face spanned by the xi- and the yj-axes,

system (4) is reduced to the two-dimensional Lotka–Volterra predator–prey equation:

ẋi = xi(s1 − c1x − αyj ),

ẏj = yj (s2 + βx − c1+n1yj ).

By Lemma A.1, this subsystem has a positive equilibrium point (x∗
i , y∗

j )T, which corresponds

to F
j

i of the full system. The Jacobi matrix of the above subsystem evaluated at (x∗
i , y∗

j )T is

(−c1x
∗
i −αx∗

i

βy∗
j −c1+n1y

∗
j

)
.

This Jacobi matrix is stable. Furthermore, we can show that

ẋi ′

xi ′

∣∣∣∣
F

j

i

< s1 − c1x
∗
i − αy∗

j = 0 and
ẏi ′

yi ′

∣∣∣∣
F

j

i

< s2 + βx∗
i − cn1+1y

∗
j = 0

hold for any i′ �= i and j′ �= j. Here we used (H6). Therefore, the Jacobi matrix of Equation
(4)H evaluated at F

j

i is stable. �

Theorem 6.3(a) with Lemma 5.4 shows that after the invasion of the prey, the prey establishes
itself and coexists with the predator. Therefore, as long as n1 and n2 are coprime, we do not
observe the phenomenon that an invader density is severely reduced after successful invasion due
to an invasion-induced phase shift of predators (see [21,30] for an analogous phenomenon). This
phenomenon is observed if n1 and n2 are not coprime (see Theorem 7.15). Since F

j

i = P mF
j

i

and F
j

i �= P jF
j

i , 0 < j < m, the equilibrium F
j

i corresponds to an m-cycle of Equation (1). Since
along the m-cycle the adults of the prey (resp. predator) appear only every n1th (resp. n2th) time-
step, Theorem 6.3(b) shows that perfect periodicities of the prey and the predator are preserved
after the prey invasion. Theorem 6.3(b) also shows that Equation (4)H with coprime n1 and n2 is
never permanent. In the next section, we see that Equation (4)H can be permanent if n1 and n2 are
not coprime.

7. Synchronous life cycles

In this section, we consider the case where n1 and n2 are not coprime, i.e. the greatest common
divisor of n1 and n2 is not 1. The first result is applicable to any numbers n1 and n2 as long as they
are not coprime.

Theorem 7.1 Consider Equation (4)H with non-coprime n1 and n2. Then the prey can always
invade Fj, j ∈ {1, 2, . . . , n2}.

Proof By Lemma 3.2, it is sufficient to show that the prey can invade Fn2 . We shall show that
ẋ1/x1|Fn2 > 0.
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Let γ 1 and γ 2 be the permutations defined in the proof of Lemma 6.1. By Equation (5),

a1n =
m−1∑
l=0

kγ l
1(1),γ l

2(n).

Note that n = n1 + n2. Let m0 be the greatest common divisor of n1 and n2. Since n1 and n2 are not
coprime, m0 ≥ 2 holds and hence n1 ≥ 2 and n2 ≥ 2. Let n1 = m0m1 and n2 = m0m2. Then m1 and
m2 are coprime and the least common multiple of n1 and n2 is m = m0m1m2. It is known that if
m1 and m2 are coprime, then {m2, 2m2, . . . , m1m2} is a compete system of incongruent residues
(mod m1) (e.g. see [13, Theorem 56]). Using this result, we can show that

a1n =
n2−1∑
l=0

(k
γ

l+n2
1 (1),γ

l+n2
2 (n)

+ k
γ

l+2n2
1 (1),γ

l+2n2
2 (n)

+ · · · + k
γ

l+m1n2
1 (1),γ

l+m1n2
2 (n)

)

=
n2−1∑
l=0

(k
γ

l+m2m0
1 (1),γ l

2(n)
+ k

γ
l+2m2m0
1 (1),γ l

2(n)
+ · · · + k

γ
l+m1m2m0
1 (1),γ l

2(n)
)

=
n2−1∑
l=0

(k
γ

l+m0
1 (1),γ l

2(n)
+ k

γ
l+2m0
1 (1),γ l

2(n)
+ · · · + k

γ
l+m1m0
1 (1),γ l

2(n)
)

= kγ
m0
1 (1),n + k

γ
2m0
1 (1),n

+ · · · + kγ
m1m0
1 (1),n. (10)

In the last step, we used the fact that only the last column of B12 is nonzero. It is known that the
congruence ξx ≡η (mod n1) is soluble in integer x if and only if the greatest common divisor of
ξ and n1 divides η (e.g. see [13, Theorem 57]). Hence the congruence m0x ≡ n1 − 1 (mod n1) is
not soluble in integer x since m0 cannot divide m0m1 − 1. That is, γ

xm0
1 (1) �= n1 for all integers

x. This shows that the sum in Equation (10) does not include kn1n. Consequently, a1n = 0 since
every entry of B12 except bn1n is zero (see (H2)).

Let y∗
n2

be the yn2 -coordinate of Fn2 . Then we have

ẋ1

x1

∣∣∣∣
Fn2

= s1 + a1ny
∗
n2

= s1 > 0.

This completes the proof. �

This theorem shows that, independent of the parameters, there exists a well-timed prey-cohort
that can initially increase its population density. In the rest of this section, by investigating the
global dynamics of Equation (4)H, we consider the fate of the system after the prey invasion. Since
it is hard to obtain a general result concerning the global dynamics of Equation (4)H, we focus on
the specific case n1 = n2 = 2. In this case, the age-specific interaction matrix A is constructed as
follows. Since n1 = n2 = 2, the permutation matrix P is

P =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

We see that
√

σ1(0)σ2(0) and
√

τ1(0)τ2(0) are the dominant eigenvalues of Ln1 [σ 1(0), σ 2(0)] and
Ln2 [τ 1(0), τ 2(0)], respectively. The following vectors are positive right eigenvectors associated
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with
√

σ1(0)σ2(0) and
√

τ1(0)τ2(0), respectively:

⎛
⎜⎜⎜⎝

√
σ2(0)√

σ1(0) + √
σ2(0)√

σ1(0)√
σ1(0) + √

σ2(0)

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

√
τ2(0)√

τ1(0) + √
τ2(0)√

τ1(0)√
τ1(0) + √

τ2(0)

⎞
⎟⎟⎟⎠ .

Each of the vectors is normalized in the sense that the sum of the components is 1. Since the least
common multiple of n1 = 2 and n2 = 2 is m = 2, the matrix

A = K + P −1KP =

⎛
⎜⎜⎝

k11 + k22 k12 + k21 k13 + k24 k14 + k23

k21 + k12 k22 + k11 k23 + k14 k24 + k13

k31 + k42 k32 + k41 k33 + k44 k34 + k43

k41 + k32 k42 + k31 k43 + k34 k44 + k33

⎞
⎟⎟⎠ ,

where K = (kij) = BD or

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11

√
σ2(0)√

σ1(0) + √
σ2(0)

b12

√
σ1(0)√

σ1(0) + √
σ2(0)

b21

√
σ2(0)√

σ1(0) + √
σ2(0)

b22

√
σ1(0)√

σ1(0) + √
σ2(0)

0 0

0 b42

√
σ1(0)√

σ1(0) + √
σ2(0)

0 0

0 b24

√
τ1(0)√

τ1(0) + √
τ2(0)

b33

√
τ2(0)√

τ1(0) + √
τ2(0)

b34

√
τ1(0)√

τ1(0) + √
τ2(0)

b43

√
τ2(0)√

τ1(0) + √
τ2(0)

b44

√
τ1(0)√

τ1(0) + √
τ2(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence k14 + k23 = k32 + k41 = 0. For convenience, we write

A =

⎛
⎜⎜⎝

−c1 −c2 −α 0
−c2 −c1 0 −α

β 0 −c3 −c4

0 β −c4 −c3

⎞
⎟⎟⎠ , (11)

where all parameters c1, c2, c3, c4, α and β are positive because of the sign pattern of B. Note that
(H3) and (H6) are reduced to s1 > 0, s2 > 0, c1 < c2 and c3 < c4. These inequalities are always
assumed in this section. As shown in Equation (11), the off-diagonal blocks A12 and A21 consist
of nonidentical entries. This property produces interesting phenomena that cannot be observed
in systems with coprime n1 and n2. As proved in Theorem 7.1, the prey can always invade F1

and F2, i.e. ẋ1/x1|F 2 = ẋ2/x2|F 1 = s1 > 0. On the other hand, the sign of ẋ1/x1|F 1 = ẋ2/x2|F 2

depends on the parameters. We divide the parameter space into two regions depending on the sign
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of ẋ1/x1|F 1 = ẋ2/x2|F 2 :

ẋ1

x1

∣∣∣∣
F 1

= ẋ2

x2

∣∣∣∣
F 2

= s1 − α

c3
s2

{
> 0 (I),

< 0 (II).

In case (I), all prey-cohorts can invade both F1 and F2, but in case (II), the prey-cohort x1 (resp.
x2) cannot invade F1 (resp. F2).

7.1. Equilibria

The origin 0 is a trivial equilibrium point. As mentioned in Section 4, each axis has a unique
positive equilibrium point. Since s1 > 0 and c1 < c2 are assumed, the face y1 = y2 = 0 has a unique
positive equilibrium point

F12 :=
(

s1

c1 + c2
,

s1

c1 + c2
, 0, 0

)T

.

Similarly, since s2 > 0 and c3 < c4, the face x1 = x2 = 0 has a unique positive equilibrium point

F 12 :=
(

0, 0,
s2

c3 + c4
,

s2

c3 + c4

)T

.

Since the prey x1 and the predator y2 (resp. the prey x2 and the predator y1) do not interact, the
face x2 = y1 = 0 (resp. x1 = y2 = 0) has a unique positive equilibrium point

F 2
1 :=

(
s1

c1
, 0, 0,

s2

c3

)T (
resp. F 1

2 := (0,
s1

c1
,
s2

c3
, 0)T

)
.

Note that 0, F1, F2, F
1, F 2, F12, F

12, F 2
1 , and F 1

2 always uniquely exist. Equation (4)H is reduced
to a Lotka–Volterra predator–prey system on the faces x1 = y1 = 0 and x2 = y2 = 0. Therefore, the
face x2 = y2 = 0 (resp. x1 = y1 = 0) has a positive equilibrium point

F 1
1 :=

(
c3s1 − αs2

αβ + c1c3
, 0,

βs1 + c1s2

αβ + c1c3
, 0

)T (
resp. F 2

2 := (0,
c3s1 − αs2

αβ + c1c3
, 0,

βs1 + c1s2

αβ + c1c3
)T

)

if and only if (I) is satisfied, and F 1
1 (resp. F 2

2 ) is a unique positive equilibrium point of the face
x2 = y2 = 0 (resp. x1 = y1 = 0) (see Lemma A.1).

The regions (I) and (II) are further subdivided into four regions as shown in Tables 1 and 2,
respectively.

Let F 12
1 (resp. F 12

2 ) be a positive equilibrium point of the face x2 = 0 (resp. x1 = 0). Then the
following proposition holds.

Proposition 7.2 F 12
1 and F 12

2 uniquely exist if (I-i), (I-ii), (II-ii) or (II-iii) holds. F 12
1 and F 12

2
do not exist if (I-iii), (I-iv), (II-i) or (II-iv) holds.
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Table 1. Definition of the parameter regions (I-i), (I-ii), (I-iii) and (I-iv).

(I-i) (I-ii) (I-iii) (I-iv)

ẋ1

x1

∣∣∣∣
F 1

= ẋ2

x2

∣∣∣∣
F 2

= s1 − α

c3
s2 + + + +

ẋ1

x1

∣∣∣∣
F 2

2

= ẋ2

x2

∣∣∣∣
F 1

1

= {αβ − (c2 − c1)c3}s1 + αc2s2

c1c3 + αβ
− + − +

ẏ1

y1

∣∣∣∣
F 2

1

= ẏ2

y2

∣∣∣∣
F 1

2

= β

c1
s1 − c4 − c3

c3
s2 − − + +

Table 2. Definition of the parameter regions (II-i), (II-ii), (II-iii) and (II-iv).

(II-i) (II-ii) (II-iii) (II-iv)

ẋ1

x1

∣∣∣∣
F 1

= ẋ2

x2

∣∣∣∣
F 2

= s1 − α

c3
s2 − − − −

ẋ1

x1

∣∣∣∣
F 12

= ẋ2

x2

∣∣∣∣
F 12

= s1 − α

c3 + c4
s2 − + − +

ẏ1

y1

∣∣∣∣
F 2

1

= ẏ2

y2

∣∣∣∣
F 1

2

= β

c1
s1 − c4 − c3

c3
s2 − − + +

Proof By Lemma 3.2, the faces x1 = 0 and x2 = 0 have the same dynamics. Hence, we focus on
the face x1 = 0. Let F 12

2 = (0, x∗
2 , y∗

1 , y∗
2 )T. Then it satisfies

s1 − c1x
∗
2 − αy∗

2 = 0,

s2 − c3y
∗
1 − c4y

∗
2 = 0,

s2 + βx∗
2 − c4y

∗
1 − c3y

∗
2 = 0.

(12)

Since c4 > c3 holds, the second and the third equations of (12) give

y∗
1 = s2(c4 − c3) + βc4x

∗
2

c2
4 − c2

3

,

y∗
2 = s2(c4 − c3) − βc3x

∗
2

c2
4 − c2

3

.

Removing y∗
2 from the first equation of (12), we obtain

{αβc3 − c1(c
2
4 − c2

3)}x∗
2 = −(c2

4 − c2
3)

ẋ1

x1

∣∣∣∣
F 12

.

Note that αβc3 − c1(c
2
4 − c2

3) < 0 (resp. αβc3 − c1(c
2
4 − c2

3) > 0) if ẋ1/x1|F 12 > 0 and
ẏ1/y1|F 2

1
< 0 (resp. ẋ1/x1|F 12 < 0 and ẏ1/y1|F 2

1
> 0). Hence, we see that if (I-i), (I-ii), (II-ii)

or (II-iii) holds, then αβc3 − c1(c
2
4 − c2

3) �= 0. Note that (I) implies x1/x1|F12 > 0.
Suppose αβc3 − c1(c

2
4 − c2

3) = 0. Then ẋ1/x1|F 12 = 0 must hold for the existence of F 12
2 . How-

ever, if (I) is satisfied, then ẋ1/x1|F 12 > 0, and if one of (II-i), (II-ii), (II-iii) and (II-iv) is satisfied,
then ẋ1/x1|F 12 �= 0. This implies that F 12

2 does not exist if one of (I), (II-i), (II-ii), (II-iii) and
(II-iv) is satisfied,
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Suppose αβc3 − c1(c
2
4 − c2

3) �= 0. Then Equation (12) has a unique solution

x∗
2 = −(c2

4 − c2
3)

αβc3 − c1(c
2
4 − c2

3)

ẋ1

x1

∣∣∣∣
F 12

,

y∗
1 = 1

αβc3 − c1(c
2
4 − c2

3)

{
−β(c3 + c4)

ẋ1

x1

∣∣∣∣
F 12

+ c1c3
ẏ1

y1

∣∣∣∣
F 2

1

}
,

y∗
2 = c1c3

αβc3 − c1(c
2
4 − c2

3)

ẏ1

y1

∣∣∣∣
F 2

1

.

From these equations, we see that x∗
2 , y∗

1 and y∗
2 are positive if (I-i), (I-ii), (II-ii) or (II-iii) holds.

Finally, we see that either x∗
2 or y∗

2 is negative if (I-iii), (I-iv), (II-i) or (II-iv) holds. �

Let F 1
12 (resp. F 2

12) be a positive equilibrium point of the face y2 = 0 (resp. y1 = 0). Then the
following proposition holds.

Proposition 7.3 F 1
12 and F 2

12 uniquely exist if (I-i) or (I-iii) holds. F 1
12 and F 2

12 do not exist if
(I-ii), (I-iv) or (II) holds.

Proof By Lemma 3.2, the faces y1 = 0 and y2 = 0 have the same dynamics. Hence we focus on
the face y1 = 0. Let F 2

12 = (x∗
1 , x∗

2 , 0, y∗
2 )T. Then it satisfies

s1 − c1x
∗
1 − c2x

∗
2 = 0,

s1 − c2x
∗
1 − c1x

∗
2 − αy∗

2 = 0,

s2 + βx∗
2 − c3y

∗
2 = 0.

(13)

Since c2 > c1 holds, the first and the second equations of (13) give

x∗
1 = s1(c2 − c1) − αc2y

∗
2

c2
2 − c2

1

,

x∗
2 = s1(c2 − c1) + αc1y

∗
2

c2
2 − c2

1

.

Removing x∗
2 from the third equation of (13), we obtain

{αβc1 − (c2
2 − c2

1)c3}y∗
2 = −(c2 − c1){βs1 + (c1 + c2)s2} < 0.

Hence if αβc1 − (c2
2 − c2

1)c3 ≥ 0, then Equation (13) has no positive solutions. If αβc1 − (c2
2 −

c2
1)c3 < 0, then Equation (13) has a unique solution

x∗
1 = {αβ − (c2 − c1)c3}s1 + αc2s2

αβc1 − (c2
2 − c2

1)c3

(
= c1c3 + αβ

αβc1 − (c2
2 − c2

1)c3

ẋ1

x1

∣∣∣∣
F 2

2

)
,

x∗
2 = −(c2 − c1)c3s1 − αc1s2

αβc1 − (c2
2 − c2

1)c3
> 0,

y∗
2 = −(c2 − c1){βs1 + (c1 + c2)s2}

αβc1 − (c2
2 − c2

1)c3
> 0.

From these observations, we see that F 2
12 exists if (I-i) or (I-iii) holds since ẋ1/x1|F 2

2
< 0 implies

αβc1 − (c2
2 − c2

1)c3 < 0. In fact, if ẋ1/x1|F 2
2

< 0 holds, then αβ − (c2 − c1)c3 < 0 holds, and the
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assumption c2 > c1 leads to αβc1 − (c2
2 − c2

1)c3 < 0. If (I-ii) or (I-iv) holds (i.e. ẋ1/x1|F 2
2

> 0),
then {αβ − (c2 − c1)c3}s1 +αc2s2 > 0 and hence F 2

12 does not exist. Furthermore (II) implies
{αβ − (c2 − c1)c3}s1 +αc2s2 > 0. Hence F 2

12 does not exist if (II) holds. �

Let F 12
12 be a positive equilibrium point of the full system. Then the following proposition holds.

Proposition 7.4 F 12
12 is always unique. F 12

12 exist if and only if ẋ1/x1|F 12 = ẋ2/x2|F 12 > 0.

Proof Since det A = α2β2 + 2αβ(c1c3 + c2c4) + (c2
1 − c2

2)(c
2
3 − c2

4) > 0, F 12
12 is always

unique. As mentioned in Section 5, the dynamics of Equation (4)H on the forward invariant
set M obeys Equation (8). Hence if Equation (8) has a positive equilibrium point, then F 12

12
exists. Conversely, if F 12

12 exists, then F 12
12 ∈ M. Otherwise, by Lemma 3.2, there exist mul-

tiple positive equilibrium points. Equation (8) has a positive equilibrium point if and only if
ẋ1/x1|F 12 = ẋ2/x2|F 12 > 0 (see Lemma A.1). �

7.2. Stability of the equilibria

The origin 0 is clearly unstable and hyperbolic since s1 > 0 and s2 > 0. Stability conditions of the
other equilibria are given below.

Proposition 7.5 F1 and F2 are always unstable and hyperbolic.

Proof By Lemma 3.2, F1 and F2 have the same stability. Hence we focus on the stability of F1.
The Jacobi matrix evaluated at F1 is given by

J (F1) =

⎛
⎜⎜⎜⎜⎜⎝

−s1 • • •
0 −c2 − c1

c1
s1 0 0

0 0
β

c1
s1 + s2 0

0 0 0 s2

⎞
⎟⎟⎟⎟⎟⎠ ,

where • denotes an arbitrary number. Hence F1 is unstable and hyperbolic. �

Proposition 7.6 F1 and F2 are always unstable. F1 and F2 are hyperbolic if (I) or (II) holds.

Proof By Lemma 3.2, F1 and F2 have the same stability. Hence we focus on the stability of F1.
The Jacobi matrix evaluated at F1 is given by

J (F 1) =

⎛
⎜⎜⎜⎝

ẋ1/x1|F 1 0 0 0
0 s1 0 0
• • −s2 •
0 0 0 −c4 − c3

c3
s2

⎞
⎟⎟⎟⎠ ,

where • denotes an arbitrary number. Hence F1 is always unstable, and if ẋ1/x1|F 1 �= 0, then F1

is hyperbolic. �

Proposition 7.7 F12 is always unstable and hyperbolic.
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Proof Let F12 = (x∗
1 , x∗

2 , 0, 0)T. Then the Jacobi matrix evaluated at F12 is given by

J (F12) =

⎛
⎜⎜⎝

−c1x
∗
1 −c2x

∗
1 • •

−c2x
∗
2 −c1x

∗
2 • •

0 0 ẏ1/y1|F12 0
0 0 0 ẏ2/y2|F12

⎞
⎟⎟⎠ ,

where • denotes an arbitrary number. Since c2 > c1, the upper left 2 × 2 submatrix of J(F12) is
hyperbolic. Moreover,

ẏ1

y1

∣∣∣∣
F12

= ẏ2

y2

∣∣∣∣
F12

= β

c1 + c2
s1 + s2 > 0. (14)

Hence F12 is hyperbolic and unstable. �

Proposition 7.8 F12 is always unstable. F12 is hyperbolic if (I), (II-i), (II-ii), (II-iii) or (II-iv)
holds.

Proof Let F 12 = (0, 0, y∗
1 , y∗

2 )T. Then the Jacobi matrix evaluated at F12 is given by

J (F 12) =

⎛
⎜⎜⎝

ẋ1/x1|F 12 0 0 0
0 ẋ2/x2|F 12 0 0
• • −c3y

∗
1 −c4y

∗
1• • −c4y

∗
2 −c3y

∗
2

⎞
⎟⎟⎠ ,

where • denotes an arbitrary number. Since c4 > c3, the lower right 2 × 2 submatrix of J(F12) is
hyperbolic. Hence F12 is hyperbolic if and only if ẋ1/x1|F 12 = ẋ2/x2|F 12 �= 0. Since

ẋ1

x1

∣∣∣∣
F 1

= ẋ2

x2

∣∣∣∣
F 2

<
ẋ1

x1

∣∣∣∣
F 12

= ẋ2

x2

∣∣∣∣
F 12

, (15)

F12 is hyperbolic if (I), (II-i), (II-ii), (II-iii) or (II-iv) holds. J(F12) is unstable since its lower right
2 × 2 submatrix is unstable. �

Proposition 7.9 F 1
1 and F 2

2 are asymptotically stable if (I-i) or (I-iii) holds. F 1
1 and F 2

2 are
unstable if (I-ii) or (I-iv) holds. F 1

1 and F 2
2 are hyperbolic if (I-i), (I-ii), (I-iii) or (I-iv) holds.

Proof By Lemma 3.2 F 1
1 and F 2

2 have the same stability. Hence we focus on the stability of F 1
1 .

Let F 1
1 = (x∗

1 , 0, y∗
1 , 0)T. Then the Jacobi matrix evaluated at F 1

1 is given by

J (F 1
1 ) =

⎛
⎜⎜⎝

−c1x
∗
1 • −αx∗

1 •
0 ẋ2/x2|F 1

1
0 0

βy∗
1 • −c3y

∗
1 •

0 0 0 ẏ2/y2|F 1
1

⎞
⎟⎟⎠ ,

where • denotes an arbitrary number. The principal 2 × 2 submatrix of J (F 1
1 ) corresponding to

x1 and y1 is stable. Moreover,

ẏ2

y2

∣∣∣∣
F 1

1

= s2 − c4y
∗
1 < s2 + βx∗

1 − c3y
∗
1 = 0. (16)

Hence F 1
1 is hyperbolic if and only if ẋ2/x2|F 1

1
�= 0. Furthermore, F 1

1 is stable (resp. unstable) if
ẋ2/x2|F 1

1
< 0 (resp. ẋ2/x2|F 1

1
> 0). �
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Proposition 7.10 F 2
1 and F 1

2 are asymptotically stable if (I-i), (I-ii), (II-i) or (II-ii) holds. F 2
1

and F 1
2 are unstable if (I-iii), (I-iv), (II-iii) or (II-iv) holds. F 2

1 and F 1
2 are hyperbolic if (I-i),

(I-ii), (I-iii), (I-iv), (II-i), (II-ii), (II-iii) or (II-iv) holds.

Proof By Lemma 3.2, F 2
1 and F 1

2 have the same stability. Hence we focus on the stability of
F 2

1 . Let F 2
1 = (x∗

1 , 0, 0, y∗
2 )T. Then the Jacobi matrix evaluated at F 2

1 is given by

J (F 2
1 ) =

⎛
⎜⎜⎝

−c1x
∗
1 • • 0

0 ẋ2/x2|F 2
1

0 0
0 0 ẏ1/y1|F 2

1
0

0 • • −c3y
∗
2

⎞
⎟⎟⎠ ,

where • denotes an arbitrary number. Since

ẋ2

x2

∣∣∣∣
F 2

1

= −c2 − c1

c1
s1 − α

c3
s2 < 0, (17)

F 2
1 is hyperbolic if and only if ẏ1/y1|F 2

1
�= 0. Furthermore, F 2

1 is stable (resp. unstable) if
ẏ1/y1|F 2

1
< 0 (resp. ẏ1/y1|F 2

1
> 0). �

Proposition 7.11 F 12
1 and F 12

2 are unstable if (I-i), (I-ii) or (II-ii) holds.

Proof By Lemma 3.2, F 12
1 and F 12

2 have the same stability. Hence, we focus on the stability of
F 12

2 . Let F 12
2 = (0, x∗

2 , y∗
1 , y∗

2 )T. Then the Jacobi matrix evaluated at F 12
2 is given by

J (F 12
2 ) =

⎛
⎜⎜⎝

ẋ1/x1|F 12
2

0 0 0
• −c1x

∗
2 0 −αx∗

2• 0 −c3y
∗
1 −c4y

∗
1• βy∗

2 −c4y
∗
2 −c3y

∗
2

⎞
⎟⎟⎠ ,

where • denotes an arbitrary number. Let J̃ (F 12
2 ) be the lower right 3 × 3 submatrix of J (F 12

2 ).
Then J̃ (F 12

2 ) is stable if and only if

trJ̃ (F 12
2 ) = −c1x

∗
2 − c3(y

∗
1 + y∗

2 ) < 0,

det J̃ (F 12
2 ) = −{αβc3 − c1(c

2
4 − c2

3)}x∗
2y∗

1y∗
2 < 0,

M̃(F 12
2 )trJ̃ (F 12

2 ) − det J̃ (F 12
2 ) = −c1{c1c3y

∗
1 + (c1c3 + αβ)y∗

2 }x∗2
2

− c3{c1c3(y
∗
1 + y∗

2 )2 + αβy∗2
2 }x∗

2

+ c3(c
2
4 − c2

3)y
∗
1y∗

2 (y∗
1 + y∗

2 ) < 0,

where M̃(F 12
2 ) is the sum of the three 2 × 2 principal minors of J̃ (F 12

2 ). If (I-i), (I-ii) or (II-ii)
holds, then

ẋ1

x1

∣∣∣∣
F 12

= s1 − α

c3 + c4
s2 > 0

and
ẏ1

y1

∣∣∣∣
F 2

1

= β

c1
s1 − c4 − c3

c3
s2 < 0.

Note that ẋ1/x1|F 12 > ẋ1/x1|F 1 . These inequalities lead to

αβc3 − c1(c
2
4 − c2

3) < 0.

Hence det J̃ (F 12
2 ) > 0, which implies that J̃ (F 12

2 ) and J (F 12
2 ) are unstable. �
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Note that ẋ2/x2|F 12
1

= ẋ1/x1|F 12
2

< 0 always holds. In fact, by the second and the third equations
of (12), we have y∗

2 − y∗
1 = −βx∗

2/(c4 − c3) < 0, which shows that

ẋ1

x1

∣∣∣∣
F 12

2

= s1 − c2x
∗
2 − αy∗

1 = (c1 − c2)x
∗
2 + α(y∗

2 − y∗
1 ) < 0,

where the first equation of (12) is used. F 12
1 and F 12

2 can be both stabilized and destabilized if
(II-iii) holds. For instance, J̃ (F 12

2 ) is stable if (s1, s2, c1, c2, c3, c4, α, β) = (1, 1, 1, 2, 1, 2, 6.5, 1.1)
and is unstable if (s1, s2, c1, c2, c3, c4, α, β) = (1, 1, 1, 2, 1, 2, 1, 6.5, 1.25). In this unstable case, a
numerical simulation with the initial condition (x1(0), x2(0), y1(0), y2(0)) = (0, 0.8, 1.4, 0.6) pro-
duces a limit cycle. Furthermore, if (s1, s2, c1, c2, c3, c4, α, β) = (1, 1, 1, 2, 1, 2, 1, 6.5, 1.3), then
J̃ (F 12

2 ) is unstable and a heteroclinic orbit from F 1
2 to F2 can be observed numerically.

Proposition 7.12 F 1
12 and F 2

12 are unstable if (I-i) or (I-iii) holds.

Proof By Lemma 3.2, F 1
12 and F 2

12 have the same stability. Hence we focus on the stability of
F 1

12. Let F 1
12 = (x∗

1 , x∗
2 , y∗

1 , 0)T. Then the Jacobi matrix evaluated at F 1
12 is given by

J (F 1
12) =

⎛
⎜⎜⎝

−c1x
∗
1 −c2x

∗
1 −αx∗

1 •
−c2x

∗
2 −c1x

∗
2 0 •

βy∗
1 0 −c3y

∗
1 •

0 0 0 ẏ2/y2|F 1
12

⎞
⎟⎟⎠ .

Let J̃ (F 1
12) be the upper left 3 × 3 submatrix of J (F 1

12). Then J̃ (F 1
12) is stable if and only if

trJ̃ (F 1
12) < 0 and det J̃ (F 1

12) < 0 and M̃(F 1
12)trJ̃ (F 1

12) − det J̃ (F 1
12) < 0, where M̃(F 1

12) is the
sum of the three 2 × 2 principal minors of J̃ (F 1

12). However,

det J̃ (F 1
12) = −{αβc1 − (c2

2 − c2
1)c3}x∗

1x∗
2y∗

1 > 0

if (I-i) or (I-iii) holds. In fact, if (I-i) or (I-iii) holds, then αβ − (c2 − c1)c3 < 0 holds, and the
assumption c2 > c1 leads to αβc1 − (c2

2 − c2
1)c3 < 0. Hence J (F 1

12) is unstable if (I-i) or (I-iii)
holds. �

Proposition 7.13 F 12
12 is always unstable.

Proof Let J (F 12
12 ) be the Jacobi matrix evaluated at F 12

12 = (x∗
1 , x∗

2 , y∗
1 , y∗

2 )T. Then the charac-
teristic polynomial |J (F 12

12 ) − λI | is

[λ2 + {(c1 + c2)x
∗
1 + (c3 + c4)y

∗
1 }λ + (c1 + c2)(c3 + c4)x

∗
1y∗

1 + αβx∗
1y∗

1 ]
× [λ2 − {(c2 − c1)x

∗
1 + (c4 − c3)y

∗
1 }λ + (c2 − c1)(c4 − c3)x

∗
1y∗

1 + αβx∗
1y∗

1 ],

where we used the fact that x∗
1 = x∗

2 and y∗
1 = y∗

2 . Note that F 12
12 ∈ M. Since (c2 − c1)x

∗
1 + (c4 −

c3)y
∗
1 > 0, J (F 12

12 ) has an eigenvalue with a positive real part. Hence F 12
12 is always unstable. �

The above results are summarized in Table 3. In cases (I-i), (I-ii), (I-iii), (II-i) and (II-ii), the
system always has an asymptotically stable boundary equilibrium point where both species have
a missing cohort. Hence, in such cases, the system is not permanent.
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878 R. Kon

Table 3. The sets of asymptotically stable equilibria.

(I) (II)

(i) {F 1
1 , F 2

2 , F 1
2 , F 2

1 } {F 2
1 , F 1

2 }
(ii) {F 1

2 , F 2
1 } {F 2

1 , F 1
2 }

(iii) {F 1
1 , F 2

2 } {F 12
1 , F 12

2 } or ∅
(iv) ∅ ∅

7.3. Nonequilibrium dynamics

In this subsection, we are interested in the global dynamics of (4)H with n1 = n2 = 2. In cases (I-i),
(I-ii), (I-iii), (II-i) and (II-ii), the system always has an asymptotically stable boundary equilibrium
point where both species have a missing cohort (see Table 3). In contrast to these cases, we can
show that all cohorts can coexist in cases (I-iv) and (II-iv).

Theorem 7.14 If (I-iv) holds, then Equation (4)H with n1 = n2 = 2 has a heteroclinic cycle

�1 : F 1
1 → F 1

2 → F 2
2 → F 2

1 → F 1
1 .

(a) �1 is asymptotically stable if

βc3{αβ − (c2 − c1)(c3 + c4)}s2
1 + 2αβ(c2c3 − c1c4)s1s2

+ αc1{αβ − (c1 + c2)(c4 − c3)}s2
2 < 0. (18)

(b) If the reversed inequality is satisfied, then the system is permanent.

Proof In order to show that �1 exists, we examine the dynamics on bdR
4+.

First, we construct a connecting orbit from F 1
2 to F 2

2 (see Figure 1(a)). Consider the dynamics
on the face x1 = 0. Let x̃1 = 0, x̃2 > 0, ỹ1 > 0, ỹ2 > 0. Since Equation (4)H is dissipative, ω(z̃)
is nonempty and compact. In case (I-iv), the face x1 = 0 has no positive equilibrium points (see
Proposition 7.2). It is known that if the Lotka–Volterra equation (A3) has no positive equilibrium
points, then every ω-limit set is contained in bdR

n+ [16, Theorem 5.2.1]. Therefore,

ω(z̃) ⊂ {z ∈ R
4
+ : x1 = 0, x2y1y2 = 0}.

Furthermore, since the origin is repelling and the system is dissipative, there exist δ1 > 0 and
δ2 > 0 such that

ω(z̃) ⊂ {z ∈ R
4
+ : x1 = 0, x2y1y2 = 0, δ1 < x2 + y1 + y2 < δ2} =: S.

(a) (b)

Figure 1. Phase portraits of the faces x1 = 0 and y1 = 0 for case (I-iv).
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By the dynamical property of two-dimensional Lotka–Volterra equations (see Lemmas A.1 and
A.2), we can draw the phase portrait on S as shown in Figure 1(a), and we see that ω(S) =
{F2, F

1, F 2, F 12, F 1
2 , F 2

2 }. In the following, we show that ω(z̃) = {F 2
2 }. Let ẑ ∈ ω(z̃). Hence

ẑ ∈ S. Suppose that ẑ is not an equilibrium point. From Figure 1(a), we see that ẑ is attracted
by an equilibrium point in S. Since S has no hetero/homoclinic cycles connecting equilibria, for
small ε > 0 and large t0 > 0, we cannot construct an (ε, t0)-chain in S connecting ẑ and itself
(see Appendix 4 for the definition of an (ε, t0)-chain). Since every ω-limit set of a dissipative
system is internally chain transitive (see Theorem A.4), ẑ /∈ ω(z̃). Therefore, every element of
ω(z̃) is an equilibrium point. Since F2, F

1, F 2, F 12, F 1
2 and F 2

2 are isolated from each other, the
internal chain transitivity of ω(z̃) implies that ω(z̃) is a singleton. Therefore, the forward orbit of z̃
converges to an equilibrium point in ω(S). We see that F2, F

1, F 2, F 12, F 1
2 and F 2

2 are hyperbolic
and ẏ1/y1|F 2

2
< 0, ẏ2/y2|F 1

2
> 0 and ẋ2/x2|F 12 > 0 (see Equations (15) and (16)). By the stable

manifold theorem, only F 2
2 has a stable manifold intersecting with a positive point of the face

x1 = 0. Hence we can conclude that ω(z̃) = {F 2
2 }. Since F 1

2 has an unstable manifold intersecting
with a positive point of the face x1 = 0, there exists a connecting orbit from F 1

2 to F 2
2 .

Next, we construct a connecting orbit from F 2
2 to F 2

1 (see Figure 1(b)). Consider the dynamics
on the face y1 = 0. Let x̃1 > 0, x̃2 > 0, ỹ1 = 0, ỹ2 > 0. Since the subsystem y1 = 0 has no positive
equilibrium points (see Proposition 7.3), similarly to the above, there exist δ1

′ > 0 and δ2
′ > 0

such that

ω(z̃) ⊂ {z ∈ R
4
+ : y1 = 0, x1x2y2 = 0, δ′

1 < x1 + x2 + y2 < δ′
2} =: S ′.

The phase portrait on S′ is shown in Figure 1(b). We see that ω(S ′) = {F1, F2, F
2, F12, F

2
1 , F 2

2 }.
Similarly to the above, using the internal chain transitivity of ω(z̃), we can show that ω(z̃) = {F 2

1 }.
In fact, S′ has no hetero/homoclinic cycles connecting equilibria, F1, F2, F

2, F12, F
2
1 and F 2

2 are
hyperbolic and ẋ2/x2|F 2

1
< 0, ẋ1/x1|F 2

2
> 0 and ẏ2/y2|F12 > 0 hold (see Equations (14) and (17)).

Furthermore, ẋ1/x1|F 2
2

> 0 shows that there exists a connecting orbit from F 2
2 to F 2

1 .
Since there exists a connecting orbit F 1

2 → F 2
2 → F 2

1 , Lemma 3.2 shows that there also exists
a connecting orbit F 2

1 → F 1
1 → F 1

2 . Hence �1 exists.
(a) Using the result in [15] (see also [16, Chapter 17]), we shall show that �1 is asymptotically

stable. We can make a characteristic matrix C1 of �1 as follows:

C1 =

⎛
⎜⎜⎝

ẋ1/x1|F 2
2

ẋ2/x2|F 2
2

ẏ1/y1|F 2
2

ẏ2/y2|F 2
2

ẋ1/x1|F 1
1

ẋ2/x2|F 1
1

ẏ1/y1|F 1
1

ẏ2/y2|F 1
1

ẋ1/x1|F 2
1

ẋ2/x2|F 2
1

ẏ1/y1|F 2
1

ẏ2/y2|F 2
1

ẋ1/x1|F 1
2

ẋ2/x2|F 1
2

ẏ1/y1|F 1
2

ẏ2/y2|F 1
2

⎞
⎟⎟⎠ ,

whose sign pattern is ⎛
⎜⎜⎝

+ 0 − 0
0 + 0 −
0 − + 0
− 0 0 +

⎞
⎟⎟⎠ .

Since each row and each column contain exactly one negative entry and one positive entry, the
cycle �1 is said to be planer in [15]. By [15, Corollary 2], the planer heteroclinic cycle �1 is
asymptotically stable if it is asymptotically stable within bdR

4+ and the product of the positive
entries of C1 is less than the product of the negative entries of C1 in absolute value, i.e.

ẋ2

x2

∣∣∣∣
F 1

1

× ẏ2

y2

∣∣∣∣
F 1

2

× ẋ1

x1

∣∣∣∣
F 2

2

× ẏ1

y1

∣∣∣∣
F 2

1

<
ẏ2

y2

∣∣∣∣
F 1

1

× ẋ1

x1

∣∣∣∣
F 1

2

× ẏ1

y1

∣∣∣∣
F 2

2

× ẋ2

x2

∣∣∣∣
F 2

1

.
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By Lemma 3.2, this inequality is equivalent to

ẋ2

x2

∣∣∣∣
F 1

1

× ẏ1

y1

∣∣∣∣
F 2

1

<
ẏ2

y2

∣∣∣∣
F 1

1

× ẋ2

x2

∣∣∣∣
F 2

1

(19)

or

{αβ − (c2 − c1)c3}s1 + αc2s2

c1c3 + αβ

(
β

c1
s1 − c4 − c3

c3
s2

)

<

(
s2 − c4

βs1 + c1s2

αβ + c1c3

)(
−c2 − c1

c1
s1 − α

c3
s2

)
.

We see that this inequality is equivalent to Equation (18). The asymptotical stability of �1 within
bdR

4+ is proved in Appendix 5.
(b) It is known that the Lotka–Volterra equation (A3) is permanent if there exists a positive

vector p = (p1, p2, . . . , pn)T > 0 such that

pT(r + Az) > 0 (20)

for all equilibrium points z ∈ bdR
n+ (e.g. see [20] and [16, Exercise 13.6.3]). Our system has the

following equilibrium points on bdR
4+:

0, F1, F2, F
1, F 2, F12, F

12, F 1
1 , F 2

2 , F 2
1 , F 1

2 .

Let p1 = p2 and p3 = p4. Then, by Lemma 3.2, our system is permanent if there exist p1 > 0 and
p3 > 0 such that

0 : 2p1s1 + 2p3s2 > 0, (21a)

F1 : p1(s1 − c2x
∗
1 ) + p3(s2 + βx∗

1 ) + p3s2 > 0, (21b)

F 1 : p1(s1 − αy∗
1 ) + p1s1 + p3(s2 − c4y

∗
1 ) > 0, (21c)

F12 : p3(s2 + βx̂1) + p3(s2 + βx̂2) > 0, (21d)

F 12 : p1(s1 − αŷ1) + p1(s1 − αŷ2) > 0, (21e)

F 1
1 : p1(s1 − c2x̃1) + p3(s2 − c4ỹ1) > 0, (21f)

F 2
1 : p1(s1 − c2x̄1 − αȳ2) + p3(s2 + βx̄1 − c4ȳ2) > 0, (21g)

where F1 = (x∗
1 , 0, 0, 0)T, F 1 = (0, 0, y∗

1 , 0)T, F12 = (x̂1, x̂2, 0, 0)T, F 12 = (0, 0, ŷ1, ŷ2)
T, F 1

1 =
(x̃1, 0, ỹ1, 0)T and F 2

1 = (x̄1, 0, 0, ȳ2)
T. It is clear that Equations (21a) and (21d) hold. Equation

(21e) holds under the assumption (I-iv). Since y∗
1 < ỹ1 and s1 − αy∗

1 > 0, Equation (21f) implies
Equation (21c). Furthermore, since x∗

1 = x̄1, Equation (21g) implies Equation (21b). Therefore,
it is sufficient to check Equations (21f) and (21g). Equations (21f) and (21g) can be expressed by

(
ẋ2/x2|F 1

1
ẏ2/y2|F 1

1

ẋ2/x2|F 2
1

ẏ1/y1|F 2
1

)(
p1

p3

)
>

(
0
0

)
.

This is fulfilled for some p1 > 0 and p3 > 0 if the reserved inequality of Equation (19) is fulfilled.
�
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Theorem 7.15 If (II-iv) holds, then Equation (4)H with n1 = n2 = 2 has a heteroclinic cycle

�2 : F 1 → F 1
2 → F 2 → F 2

1 → F 1.

(a) �2 is asymptotically stable if

2βc3s1 − {αβ + (c1 + c2)(c4 − c3)}s2 < 0. (22)

(b) If the reversed inequality is satisfied, then the system is permanent.

Proof By the same argument as in the proof of Theorem 7.14, we can show that there exists a
connecting orbit from F 1

2 to F2. The phase portrait of the face x1 = 0 is shown in Figure 2(a).
Since x1 and y2 do not interact, the face x2 = y1 = 0 has a connecting orbit from F2 to F 2

1 . The
phase portrait of the face x2 = y1 = 0 is shown in Figure 2(b). Since there exists a connecting orbit
F 1

2 → F 2 → F 2
1 , Lemma 3.2 shows that there also exists a connecting orbit F 2

1 → F 1 → F 1
2 .

Hence �2 exists.
(a) Using the result in [15] (see also [16, Chapter 17]), we shall show that �2 is asymptotically

stable. We can make a characteristic matrix C2 of �2 as follows:

C2 =

⎛
⎜⎜⎝

ẏ2/y2|F 1
2

ẏ1/y1|F 1
2

ẋ2/x2|F 1
2

ẋ1/x1|F 1
2

ẏ2/y2|F 2
1

ẏ1/y1|F 2
1

ẋ2/x2|F 2
1

ẋ1/x1|F 2
1

ẏ2/y2|F 1 ẏ1/y1|F 1 ẋ2/x2|F 1 ẋ1/x1|F 1

ẏ2/y2|F 2 ẏ1/y1|F 2 ẋ2/x2|F 2 ẋ1/x1|F 2

⎞
⎟⎟⎠ ,

whose sign pattern is ⎛
⎜⎜⎝

+ 0 0 −
0 + − 0
− 0 + −
0 − − +

⎞
⎟⎟⎠ .

Since each row and each column contains exactly one positive entry, the cycle �2 is said to
be simple (but not planer) in [15]. By [15, Corollary 1], the simple heteroclinic cycle �2 is
asymptotically stable if it is asymptotically stable within bdR

4+, det C2 �= 0 and at least one
leading principal minor of C2 is negative. By the sign pattern of C2, the 1 × 1, 2 × 2, 3 × 3 leading
principal minors are positive. If we note that some entries of C2 are identical, we have

(a) (b)

Figure 2. Phase portraits of the faces x1 = 0 and y1 = 0 for case (II-iv).
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det C2 =
{(

− ẋ1

x1

∣∣∣∣
F 1

+ ẋ2

x2

∣∣∣∣
F 1

)
ẏ1

y1

∣∣∣∣
F 2

1

+ ẋ2

x2

∣∣∣∣
F 2

1

ẏ2

y2

∣∣∣∣
F 1

}

×
{(

ẋ1

x1

∣∣∣∣
F 1

+ ẋ2

x2

∣∣∣∣
F 1

)
ẏ1

y1

∣∣∣∣
F 2

1

− ẋ2

x2

∣∣∣∣
F 2

1

ẏ2

y2

∣∣∣∣
F 1

}
.

Since the first factor of the above equation is positive, det C2 < 0 if and only if(
ẋ1

x1

∣∣∣∣
F 1

+ ẋ2

x2

∣∣∣∣
F 1

)
ẏ1

y1

∣∣∣∣
F 2

1

− ẋ2

x2

∣∣∣∣
F 2

1

ẏ2

y2

∣∣∣∣
F 1

< 0 (23)

or (
2s1 − α

c3
s2

)(
β

c1
s1 − c4 − c3

c3
s2

)
−
(

−c2 − c1

c1
s1 − α

c3
s2

)(
−c4 − c3

c3
s2

)
< 0,

which is equivalent to Equation (22). See Appendix 5 for the asymptotical stability of �2 within
bdR

4+.

Figure 3. The behaviour of the heteroclinic cycles �1 and �2.

0 1 2 3 4 5 6 7

0

2

4

6

8

10

Figure 4. The (α, β) parameter plane. The other parameters are s1 = s2 = 1, c1 = 1, c2 = 2, c3 = 2, c4 = 4. In the hatched
region, Equation (4) is permanent.

D
ow

nl
oa

de
d 

by
 [

M
iy

az
ak

i U
ni

ve
rs

ity
] 

at
 1

9:
30

 1
9 

A
ug

us
t 2

01
2 



Journal of Biological Dynamics 883

(b) We use the same method as in the proof of Theorem 7.14. Our system has the following
equilibrium points on bdR

4+:

0, F1, F2, F
1, F 2, F12, F

12, F 2
1 , F 1

2 .
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Figure 5. Numerical experiments of cases (I-iv) or (II-iv).In (a), (c), (e) and (g), the solid, the dashed, the dotted and the
dot-dashed lines denote x1(t), x2(t), y1(t) and y2(t), respectively. In (b), (d), (f) and (h), the solid and the dotted lines denote
x1(t) + x2(t), respectively. The horizontal axes of (a), (b), (e) and (f) are scaled logarithmically. In (a) and (b), the solution
converges to the heteroclinic cycle �1. In (e) and (f), the solution converges to the heteroclinic cycle �2. In (c) , (d), (g)
and (h), the solutions converge to periodic orbits. The parameters are chosen from the (α, β) parameter plane shown in
Figure 4: (α, β) = (1, 3) for (a) and (b); (α, β) = (1.5, 8) for (c) and (d); (α, β) = (4, 2) for (e) and (f); (α, β) = (2.5, 9) for
(g) and (h). The initial conditions are fixed at (x1(0), x2(0), y1(0), y2(0)) = (0.01, 0.01, 1, 0.01).
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Let p1 = p2 and p3 = p4. Then, by Lemma 3.2, our system is permanent if there exist p1 > 0 and
p3 > 0 such that

0 : 2p1s1 + 2p3s2 > 0, (24a)

F1 : p1(s1 − c2x
∗
1 ) + p3(s2 + βx∗

1 ) + p3s2 > 0, (24b)

F 1 : p1(s1 − αy∗
1 ) + p1s1 + p3(s2 − c4y

∗
1 ) > 0, (24c)

F12 : p3(s2 + βx̂1) + p3(s2 + βx̂2) > 0, (24d)

F 12 : p1(s1 − αŷ1) + p1(s1 − αŷ2) > 0, (24e)

F 2
1 : p1(s1 − c2x̄1 − αȳ2) + p3(s2 + βx̄1 − c4ȳ2) > 0, (24f)

where F1 = (x∗
1 , 0, 0, 0)T, F 1 = (0, 0, y∗

1 , 0)T, F12 = (x̂1, x̂2, 0, 0)T, F 12 = (0, 0, ŷ1, ŷ2)
T and

F 2
1 = (x̄1, 0, 0, ȳ2)

T. It is clear that Equations (24a) and (24d) hold. Equation (24e) holds under the
assumption (II-iv). Furthermore, since x∗

1 = x̄1, Equation (24f) implies Equation (24b). Therefore,
it is sufficient to check Equations (24c) and (24f). Equations (24c) and (24f) can be expressed by(

ẋ1/x1|F 1 + ẋ2/x2|F 1 ẏ2/y2|F 1

ẋ2/x2|F 2
1

ẏ1/y1|F 2
1

)(
p1

p3

)
>

(
0
0

)
.

Hence, the above inequality is fulfilled for some p1 > 0 and p3 > 0 if the reserved inequality of
Equation (23) is fulfilled. �

The behaviours of �1 and �2 are illustrated in Figure 3. Although �1 approaches neither F1

nor F2, �2 approaches both of them. This implies that along �2 the total population density of
the prey approaches zero intermittently. Figure 4 shows the (α, β) parameter plane, in which the
region satisfying Equation (18) or Equation (22) can be found. Numerical experiments of cases
(I-iv) or (II-iv) are shown in Figure 5.

8. Concluding remark

Our aim was to provide mathematical evidences that prime periodicities are not advantageous for
periodical cicadas even under periodic predation pressure. For this purpose, we studied an age-
structured predator–prey model. Both prey and predator are assumed to be periodical in the sense
of Bulmer [2]. The periods of the prey and the predator are denoted by n1 and n2, respectively.
We found that the dynamics of our age-structured model strongly depends on whether n1 and
n2 are coprime. Theorem 6.2 shows that the periodical predator can resist the invasion of the
periodical prey if n1 and n2 are coprime. On the other hand, Theorem 7.1 shows that if n1 and
n2 are not coprime, then, with the help of a well-timed cohort of itself, the periodical prey can
always invade the system with the periodical predator. This suggests that periodical predation
pressure is deleterious to prime number periodical cicadas since their prime number periods
are coprime with any shorter periods. Theorems 6.3, 7.14 and 7.15 show the outcome after the
invasion of the periodical prey under periodic predation pressure. Theorems 6.3 shows that if n1

and n2 are coprime, then perfect periodicities are preserved in both populations even if the two
species coexist. However, Theorems 7.14 and 7.15 show that if n1 = n2 = 2 (hence n1 and n2 are
not coprime), then perfect periodicities can disappear and all cohorts can coexist.

Analogous behaviours to those observed in Theorem 7.15 are found by Kirlinger [21], who
studied a four-dimensional Lotka–Volterra equation for two predator–prey pairs linked by inter-
specific competition between the preys. In this system, she found an attractive heteroclinic cycle
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F1 → F 1
1 → F2 → F 2

2 → F1, which corresponds to �2 if the role of prey and predators are
exchanged. A sufficient condition for permanence is also provided. However, since predators are
not self-supporting and interspecific competition between predators are absent in her system,
we cannot simply apply her results to our Lotka–Volterra equation. Mylius and Diekmann [30]
also found analogous behaviours in their three-dimensional discrete-time model for competition
between annual and biennial populations. They assumed that the annual population in isolation has
a stable 2-cycle. Under the assumption, they observed an attractive heteroclinic cycle connecting
the 2-cycle of annuals. Due to this heteroclinic connection, successful invasion of a single cohort
of biennials is inevitably followed by its extinction and re-establishment of the resident. They call
this phenomenon resident strikes back. Furthermore, if the heteroclinic cycle is attractive in the
full system, simultaneous invasion of two cohorts of biennials leads to repetition of invasion and
extinction of biennials. Along �2 in our system, we observe the similar behaviour.

Our model did not deal with an important respect considered by Webb [32]. In [32], instead
of presuming that predators are periodical in the sense of Bulmer [2], he assumed that preda-
tors have fixed lengths of life cycles and have quasi-cycles, i.e. cycles that are damped. Under
these assumption, he demonstrated that sustained oscillation appears if the damped oscillation of
predators is periodically perturbed to mimic the periodical emergence of periodical cicadas. It is
not clear whether such a resonance is still preserved even if quasi-cyclic predators dynamically
interact with periodical cicadas. It is a future work to relax the assumption of perfect periodicities
for predators.
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Appendix 1. Severe inter-class competition

In this appendix, we show that (H6) can be realized when inter-class competition is severe in each population.
Since the Lotka–Volterra equation (4) with Equation (5) is derived by taking the limit h → 0, which implies R1

0 → 1,
it is reasonable to assume that the parameters satisfy the constraint σ 1(0)σ 2(0)· · · σ n1 (0) = 1. Then we note that the
following equations hold:

d2

d1
= σ1(0),

d3

d1
= σ1(0)σ2(0),

.

.

.

dn1

d1
= σ1(0)σ2(0) · · · σn1−1(0).

Define ρl , l ∈ {1, 2, . . . , n1 − 1}, by

ρl := c1−l

c1
= k1,1−l + k2,2−l + · · · + km,m−l

k11 + k22 + · · · + kmm

= (m/n1)(k1+l,1 + k2+l,2 + · · · + kn1+l,n1 )

(m/n1)(k11 + k22 + · · · + kn1n1 )

= b1+l,1d1 + b2+l,2d2 + · · · + bn1+l,n1 dn1

b11d1 + b22d2 + · · · + bn1n1 dn1

= b1+l,1 + b2+l,2σ1(0) + · · · + bn1+l,n1 σ1(0)σ2(0) · · · σn1−1(0)

b11 + b22σ1(0) + · · · + bn1n1 σ1(0)σ2(0) · · · σn1−1(0)
,

where all subscripts are counted modulo n1 and kij is the (i, j)-entry of K = BD. The denominator of ρl involves the
intra-class competition coefficients bii of the prey while the numerator involves the inter-class competition coefficients
bij , i �= j, of the prey. The ratio ρl is introduced by Cushing [6] to measure the intensity of inter-class competition relative
to the intensity of intra-class competition in a semelparous population. The ratio ρl measures the total effect that each
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class i has on the survival (or reproduction) of the conspecific class i + l (mod n1). Since the condition that c1 < cl for all
l ∈ {2, 3, . . . , n1} is equivalent to the condition that ρl > 1 for all l ∈ {1, 2, . . . , n1 − 1}, Fi is stabilized in the subsystem
y = 0 if there is severe inter-class competition in the prey population. Similarly, we can show that Fj is stabilized in the
subsystem x = 0 if there is severe inter-class competition in the predator population.

Appendix 2. Two-dimensional Lotka–Volterra equations

In this appendix, we review some known results on two-dimensional Lotka–Volterra equations. Consider the following
two-dimensional Lotka–Volterra predator–prey system:

ẋ = x(s1 − c1x − αy),

ẏ = y(s2 + βx − c3y),
(A1)

where s1, s2, c1, c3, α and β are positive. Then the following lemma holds.

Lemma A.1 Consider Equation (A1).

(a) If s1/α > s2/c3 holds, then there exists a positive equilibrium point that is globally asymptotically stable in {(x, y)T ∈
R

2 : x > 0, y > 0}.
(b) If s1/α ≤ s2/c3 holds, then there exist no positive equilibrium points and the boundary equilibrium point (0, s2/c3)T

is globally asymptotically stable in {(x, y)T ∈ R
2 : x ≥ 0, y > 0}.

Proof Equation (A1) has a positive equilibrium point if and only if

s1 − c1x
∗ − αy∗ = 0,

s2 + βx∗ − c3y
∗ = 0

has a positive solution (x∗, y∗)T. Hence Equation (A1) has a positive equilibrium point if and only if s1/α > s2/c3.

(a) Suppose that s1/α > s2/c3 holds. Let �1 := {(x, y) ∈ R
2 : x > 0, y > 0} and define V1 : �1 → R by

V1(x, y) := β(x∗ log x − x) + α(y∗ log y − y).

Then the time-derivative of V1 along a solution of Equation (A1) is

V̇1(x, y) = c1β(x − x∗)2 + c3α(y − y∗)2.

This is positive for all (x, y)T ∈ �1 with (x, y)T �= (x∗, y∗)T. This implies that (x∗, y∗)T is globally asymptotically stable
in �1.

(b) Suppose that s1/α ≤ s2/c3 holds. Let �2 := {(x, y) ∈ R
2 : x ≥ 0, y > 0} and define V2 : �2 → R by

V2(x, y) := −βx + α

(
s2

c3
log y − y

)
.

Then the time-derivative of V2 along a solution of Equation (A1) is

V̇2(x, y) = c1βx2 + c3α

(
y − s2

c3

)2

− βx

(
s1 − α

s2

c3

)
.

This is positive for all (x, y)T ∈ �2 with (x, y)T �= (0, s2/c3)T. This implies that (0, s2/c3)T is globally asymptotically
stable in �2. �

Consider the following two-dimensional Lotka–Volterra competitive system:

ẋ1 = x1(s1 − c1x1 − c2x2),

ẋ2 = x2(s1 − c2x1 − c1x2),
(A2)

where s1, c1 and c2 are positive and c1 < c2 is assumed. Then the following lemma holds.

Lemma A.2 Equation (A2) has a positive equilibrium point. Let (x1(t), x2(t)) be a solution of Equation (A2). Then

(a) (x1(t), x2(t)) → (s1/c1, 0) as t → ∞ if x1(0) > x2(0) > 0;
(b) (x1(t), x2(t)) → (0, s1/c1) as t → ∞ if x2(0) > x1(0) > 0;
(c) (x1(t), x2(t)) → (s1/ (c1 + c2), s1/ (c1 + c2)) as t → ∞ if x2(0) = x1(0) > 0.
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Proof It is easy to see that Equation (A2) has a positive equilibrium point

F12 :=
(

s1

c1 + c2
,

s1

c1 + c2

)T

.

LetM := {(x1, x2)
T ∈ R

2+ : x1 = x2}. ThenM is forward invariant since

d

dt

(
x1

x2

)
=
(

x1

x2

)
(c2 − c1)(x1 − x2).

holds. If (x1, x2)
T ∈M, then

ẋ1 + ẋ2 = (x1 + x2)

{
s1 − c1 + c2

2
(x1 + x2)

}

holds. Hence the dynamics on the lineM obeys the logistic equation. The statement (c) is an immediate consequence of
this observation.

Finally consider cases (a) and (b). We see that Equation (A2) is a competitive system in the sense that

∂ẋ1

∂x2
≤ 0 and

∂ẋ2

∂x1
≤ 0

for all (x1, x2)
T ∈ R

2+. It is known that every solution of a competitive system converges an equilibrium point if the system
is dissipative (e.g. see [16, Section 3.4]). By Lemma 5.3, Equation (A2) is dissipative. Hence every solution of Equation
(A2) converges to an equilibrium point. By uniqueness of solutions, any orbit cannot cross the lineM. Furthermore, we
see that F12 is a saddle hyperbolic equilibrium point and the stable manifold of F12 is contained in M. By the stable
manifold theorem, any orbit outside ofM cannot converge to F12. Since the origin 0 is a source, any nonzero orbit cannot
converge to 0. From this observation, the statements (a) and (b) follow. �

Appendix 3. Lotka–Volterra equations with some special structure

In this appendix, we derive a useful theorem for the Lotka–Volterra equation

żi = zi (ri + (Az)i ), i = 1, 2, . . . n, (A3)

where A = (aij), aij ∈ R and ri ∈ R. We decompose n species into N ≥ 1 groups. Let n1, n2, . . . , nN ≥ 1 and
n1 + n2 + nN = n. Define I1, I2, . . . , IN by

I1 = {1, 2, . . . , n1},
I2 = {n1 + 1, n1 + 2, . . . , n1 + n2},

.

.

.

IN = {n1 + n2 + · · · + nN−1 + 1, n1 + n2 + · · · + nN−1 + 2, . . . , n}.

Define the reduced population vector Z(z) = (Z1(z), Z2(z), . . . , ZN (z))T by

Zi(z) :=
∑
j∈Ii

zj , i = 1, 2, . . . , N.

According to the index sets I1, I2, . . . , IN , we decompose the interaction matrix A into N2 blocks as follows:

A =
⎛
⎜⎝

A11 · · · A1N

.

.

.
.
.
.

AN1 · · · ANN

⎞
⎟⎠ ,

where Aij is an ni × nj matrix. We assume that the interaction matrix A and the intrinsic growth rate ri satisfy the following
assumptions:

• For each i, j ∈ {1, 2, . . . , N} with i �= j, there exists a constant āij ∈ R such that Aij = āijE, where E is defined by
Equation (9);

• For each i ∈ {1, 2, . . . , N}, there exists a constant si ∈ R such that and rj = si for all j ∈ Ii.
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Define N × N matrix Ā := (āij ). Under these assumptions we obtain the following theorem.

Theorem A.3 Let z(t) be a solution of Equation (A3). Suppose that Equation (A3) is dissipative. If there exists an
i ∈ {1, 2, . . . , N} such that si + (ĀZ(ẑ))i > 0 for each equilibrium point ẑ of Equation (A3) with Zi(ẑ) = 0, then there
exists a constant δ > 0 such that lim inf t→∞ Zi(z(t)) > δ for all z(0) ∈ R

n+ with Zi(z(0)) > 0.

Proof The proof is almost parallel to the one for [17, Lemma 4.4].
Let S = {z ∈ R

n+ : Zi(z) = 0}. Since Equation (A3) is dissipative, a theorem of average Liapunov functions [19,
Theorem 2.5] ensures that the conclusion of the theorem follows if there exists a continuously differentiable function
V : R

n+ → R+ such that

(i) V (z) = 0 if and only if z ∈ S;
(ii) there exists a continuous function ψ : R

n+ → R such that V̇ (z) ≥ V (z)ψ(z) for all z ∈ R
n+;

(iii) for any z ∈ ω(S) there exists a T > 0 satisfying∫ T

0
ψ(z(t)) dt > 0, (A4)

where z(t) is a solution of Equation (A3) with z(0) = z and ω(S) is the closure of ω(S).

Define V : R
n+ → R+ by V (z) = Zi(z). Then V is continuously differentiable and satisfies (i). The time-derivative of V

along a solution of Equation (A3) satisfies V̇ (z) ≥ V (z)ψ(z) for the continuous function ψ(z) = minj∈Ii {si + (Az)j }.
Hence the condition (ii) is satisfied. Note that ψ(z) = si + (ĀZ(z))i if Zi(z) = 0. Let us check the condition (iii). We first
claim that if Equation (A4) holds for every z ∈ ω(y), then Equation (A4) also holds for the solution starting at y. For h > 0
and T > 0, define

U(h, T ) :=
{

z ∈ R
n+ :

∫ T

0
si + (ĀZ(z(t)))idt > h

}
.

Then U(h, T ) is open in R
n+. Let y ∈ S and y(t) be a solution with y(0) = y. Suppose that Equation A4 holds for every

z ∈ ω(y). Then the sets U(h, T ), h > 0, T > 0, form an open cover of ω(y). Since ω(y) is compact, there exist h̄ > 0 and
T1, T2, . . . , Tm > 0 such that

ω(y) ⊂
m⋃

i=1

U(h̄, Ti ) =: W.

Note that U(h1, T ) ⊃ U(h2, T ) if h1 ≤ h2. Since W is a neighbourhood of ω(y), there exists a t0 ≥ 0 such that y(t) ∈ W
for all t ≥ t0. Therefore, for some t1, t2, . . . , tl ∈ {T1, T2, . . . , Tm}, the following inequality holds:∫ t0

0
si + (ĀZ(z(t)))idt + h̄l > 0.

This implies that the integral of Equation (A4) for y becomes positive at t = ∑l
j=0 tj .

Let k(z) be the number of positive components of z. By induction on k, we show that Equation (A4) holds for all z ∈ S.
If k(z) = 0 (thus z = 0), then Equation (A4) holds since si > 0. Suppose that Equation (A4) holds if 0 ≤ k(z) ≤ m − 1. Let
z ∈ S with k(z) = m. Then (I): 0 ≤ k(y) ≤ m − 1 holds for every y ∈ ω(z) or (II): there exists a point y ∈ ω(z) with k(y) = m.
In case (I), the induction hypothesis and the claim proved above yields Equation (A4). In case (II), the averaging property
of solutions of Equation (A3) implies that there exists a sequence Tj → ∞ and an equilibrium point ẑ ∈ S such that

lim
j→∞

1

Tj

∫ Tj

0
z(t) dt = ẑ

(e.g. see [16, Theorem 5.2.3]). Therefore, by assumption,

1

Tj

∫ Tj

0
si + (ĀZ(z(t)))idt > 0

holds for j sufficiently large. This implies that Equation (A4) holds. �

Appendix 4. Internally chain transitive set

Let X be a metric space with metric d and φ : R+ × X → X, t ≥ 0, be a continuous semiflow. A nonempty invariant
set M ⊂ X for φ (i.e. φ(t, M) = M, t ≥ 0) is said to be internally chain transitive if for any a, b ∈ M and any ε > 0,
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t0 > 0, there is a finite sequence {x1 = a, x2, . . . , xm−1, xm = b;t1, . . . , tm−1} with xi ∈ M and ti ≥ t0, 1 ≤ i ≤ m − 1, such
that d(φ(ti, xi), xi+1) < ε for all 1 ≤ i ≤ m − 1. The sequence {x1, x2, . . . , xm;t1, . . . , tm−1} is called an (ε, t0)-chain in M
connecting a and b.

Theorem A.4 [14, Lemma 2.1’] The ω-limit set of any precompact orbit is internally chain transitive.

Appendix 5. Asymptotical stability of �1 and �2 with in bdR
4+

In this section, we show that the heteroclinic cycles �1 and �2 are asymptotically stable within bdR
4+. Before the proofs, we

introduce useful notation. Let d(z1, z2) be the Euclidean metric between z1, z2 ∈ R
n+. For z ∈ R

n+ and ε > 0, define Bε(z) =
{z′ ∈ R

n+ : d(z′, z) < ε} and Sε(z) = {z′ ∈ R
n+ : d(z, z′) = ε}. For z ∈ R

n+ and M ⊂ R
n+, define d(z, M) = inf{d(z, z′) :

z′ ∈ M}. For M ⊂ R
n+ and ε > 0, define Bε(M) = {z ∈ R

n+ : d(z, M) < ε} and Sε(M) = {z ∈ R
n+ : d(z, M) = ε}. Let

φ be the flow associated with our differential equation.

Lemma A.5 If (I-iv) holds, then �1 is asymptotically stable within bdR
4+.

Proof It is clear that �1 is attractive within bdR
4+. Therefore, it is sufficient to show that it is stable. Suppose that �1 is

not stable within bdR
4+. Then there exist an ε > 0 and sequences {zj} with zj ∈ bdR

4+\�1 and {tj} with tj ≥ 0 such that
d(zj , �1) → 0 as j → ∞ and

φ(tj , zj ) ∈ Sε(�1) ∩ bdR
4+ (A5)

for all j. We shall obtain a contradiction.
Consider the case where H1 := {z ∈ R

4+ : x1 = 0} includes infinitely many zj . Since �1 is compact, there exist z∗ ∈ �1

and a subsequence of {zj}, again denoted by {zj}, such that zj ∈ H1\ï¸Ł�1 and zj → z∗. If z∗ = F 2
2 , then Equation (A5)

does not hold since F 2
2 is stable within H1. If z∗ ∈ �1\{F 1

2 , F 2
2 }, then by continuous dependence on initial conditions, there

exist a neighbourhood U1 of z∗ such that φ(t, U1 ∩ H1) eventually enters a small neighbourhood of the stable equilibrium
point F 2

2 without leaving Bε (�1). Hence Equation (A5) does not hold. Finally, suppose z∗ = F 1
2 (see Figure A1). Since

F 1
2 is hyperbolic, there exists a small η > 0 such that F 1

2 is the maximal invariant set in Bη(F
1
2 ) and Bη(F

1
2 ) ∩ H1 and the

unstable manifold of F 1
2 have a unique intersection. Let q be the unique intersection. Since F 1

2 is the maximal invariant
set in Bη(F

1
2 ), for all j ≥ 0 sufficiently large there exists a sequence {t̄j } with t̄j ≥ 0 such that

φ(t̄j , zj ) ∈ Sη(F
1
2 ) ∩ H1 and φ(t, zj ) ∈ Bη(F

1
2 ) ∩ H1

for all t ∈ [0, t̄j ). Since Sη(F
1
2 ) ∩ H1 is compact, a subsequence of φ(t̄j , zj ) converges to a point q′ ∈ Sη(F

1
2 ) ∩ H1.

Suppose p′ �= p. Then the backward orbit of p′ cannot stay in Bη(F
1
2 ) since F 1

2 is the maximum invariant set in Bη(F
1
2 )

and p is a unique intersection between Bη(F
1
2 ) ∩ H1 and the unstable manifold of F 1

2 . Hence there exists a t̂ > 0 such
that φ(−t̂ , q′) /∈ Bη(F

1
2 ). By continuous dependence on initial conditions, there exists a neighbourhood U2 of q′ such

that q �∈ U2 and F 1
2 /∈ φ([−t̂ , 0], U2). This is a contradiction to the fact that φ(t̄j , zj ) → q′ and zj → F 1

2 as j → ∞.
Hence q = q′. Since q ∈ �1, q �= F 2

2 and q �= F 1
2 hold, the above argument shows that Equation (A5) does not hold.

Since the faces x2 = 0, y1 = 0 and y2 = 0 have properties similar to the face x1 = 0, the above argument is applicable
to these faces and the stability of �1 follows. �

Since the proof of the following lemma is almost the same as the above proof, we omit it.

Lemma A.6 If (II-iv) holds, then �2 is asymptotically stable within bdR
4+.

Figure A1. Cartoon for Lemma A.5.
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