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Abstract. The concept of limiting factors (or regulating factors) succeeded
in formulating the well-known principle of competitive exclusion. This paper

shows that the concept of limiting factors is helpful not only to formulate the
competitive exclusion principle, but also to obtain other ecological insights. To

this end, by focusing on a specific community structure, we study the dynamics

of Kolmogorov equations and show that it is possible to derive an ecologically
insightful result only from the information about interactions between species

and limiting factors. Furthermore, we find that the derived result is a general-

ization of the preceding work by Shigesada, Kawasaki, and Teramoto (1984),
who examined a certain Lotka-Volterra equation in a different context.

1. Introduction. The dynamics of ecological systems is often modeled by the fol-
lowing system of ordinary differential equations:

ẋi = xigi(x1, x2, . . . , xn), i = 1, 2, . . . , n (1)

with the initial values in

Rn
+ := {(x1, x2, . . . , xn) ∈ Rn : xi ≥ 0 for all i}.

Here ẋi = dxi/dt and xi denotes the population size of species i. The function gi
denotes the (per capita) growth rate of species i. This system is called the ecological
system of Kolmogorov type. The well-known ecological system of Lotka-Volterra
type is a special case of Eq. (1). If we are interested in competitive systems,

(∂gi/∂xj)(x1, x2, . . . , xn) ≤ 0 (2)

is assumed for every i, j ∈ {1, 2, . . . , n} with i 6= j and (x1, x2, . . . , xn) ∈ Rn
+. Eq.(2)

with the strict inequality implies that the growth rate of species i is suppressed
by species j. Under this general assumption system (1) has been studied in the
literature. For instance, the theory of monotone dynamical systems succeeded to
characterize the dynamical properties of system (1) with (2) (e.g., see [4, 16]).
However, the assumption (2) is too general to further obtain ecologically insightful
results. Therefore, in this paper, as a way of further restricting system (1) with
(2), we focus on the concept of limiting factors (or regulating factors) introduced
by Levin [9].

2010 Mathematics Subject Classification. Primary: 34D20; Secondary: 92B05.
Key words and phrases. P-matrix, P-function, nonlinear complementary problem, saturated

equilibrium, Lotka-Volterra equation.

71

http://dx.doi.org/10.3934/mbe.2015.12.71


72 RYUSUKE KON

The concept of limiting factors was introduced to generalize the concept of re-
sources. Consider system (1) with

gi(x1, x2, . . . , xn) = ui(z1, z2, . . . , zk), i = 1, 2, . . . , n,
zj = rj(x1, x2, . . . , xn), j = 1, 2, . . . , k.

(3)

The system has k limiting factors in the sense that the growth rates gi are regulated
by k factors, whose amounts are denoted by z1, z2, . . . , zk. Each factor is potentially
dependent of the population sizes. In practical problems, z1, z2, . . . , zk are the
amounts of nutrients, the densities of natural enemies and so on. In addition to (3),
we may assume that

(∂ui/∂zj)(z1, z2, . . . , zk) ≥ 0 and (∂rj/∂xi)(x1, x2, . . . , xn) ≤ 0 (4)

for all i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , k}, (x1, x2, . . . , xn) ∈ Rn
+, and (z1, z2, . . . , zk) ∈

Rk. This assumption is biologically reasonable if zi (or zi plus a constant) denotes
the amount of a nutrient or −zi (or −zi plus a constant) denotes the population size
of a natural enemy. With the framework (3), the preceding works [3, 11] succeeded
to mathematically formulate the competitive exclusion principle that the number
of coexisting species, n, cannot exceed the number of limiting factors, k (see also
[1, 2]).

The introduction of the concept of limiting factors enhances the resolution of
viewing competitive systems. The condition (2) only determines the interaction
between species. But the condition (3) with (4) determines the interaction between
species and a limiting factor. Each species is indirectly connected with competitors
through limiting factors. It is clear that (3) with (4) implies (2). Therefore, com-
petition between species is more finely described by (3) with (4). As the preceding
works of competitive exclusion, this extent of specification of community structure
might be enough to obtain some ecologically insightful results from (1). In order
to support this expectation, we focus on the specific community structure shown
in Fig. 1 (iii). The structure is a combination of two extreme cases (i) and (ii): (i)
each species has its own limiting factor; (ii) all species share a single limiting factor.
Both extreme cases are simple and their dynamics are known (see section 2). By
focusing on this specific community structure, we show that the concept of limiting
factors is helpful not only to formulate the competitive exclusion principle, but also
to obtain other ecological insights.

(i) (ii) (iii)

Figure 1. Community structures visualized with limiting fac-
tors. A species and a limiting factor are represented by a circle
and a square, respectively. An edge between a circle and a square
implies that the population growth of the corresponding species is
regulated by the corresponding limiting factor.
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The next section examines the dynamics of the extreme cases (i) and (ii) and
mathematically formulates the system shown in Fig. 1 (iii). The result is used in
the subsequent sections. Section 3 includes main results of this paper. We examine
the equilibrium points of our system. Then we reveal some characteristic properties
of our system due to its community structure. Section 3 also includes the result of
global stability. These results are reviewed within the framework of Lotka-Volterra
equations. The final section includes conclusions.

2. Prerequisite. In order to formulate our system shown in Fig. 1 (iii), we further
specify the community structure with directed graphs as shown in Fig. 2. An arrow
from node A to node B implies that the amount of A influences the amount of B.
Denote by yi the amount of the liming factor connected only to species i. yi is called

A

B y1 y2 yn

x1 x2 xn

z

Figure 2. A community structure specified with directed graphs.
The dashed arrow from A to B implies that the amount of B is
suppressed by A. The solid arrow from B to A implies that the
amount of A is enhanced by B. Under the assumption (4) every
arrow directed to a circle (resp. square) is solid (resp. dashed).

the species-specific limiting factor since it regulates only the population growth of
species i. Since only xi influences yi, we have

yi = ri(xi), i = 1, 2, . . . , n. (5)

Similarly, denote by z the amount of the limiting factor shared by all species. z is
called the common liming factor since it regulates all species growth rates. Since
all x1, x2, . . . , xn influence z, we have

z = s(x1, x2, . . . , xn). (6)

Since species i is regulated by the limiting factors yi and z, we have

gi(x1, x2, . . . , xn) = ui(yi, z), i = 1, 2, . . . , n. (7)

In order to normalize the amounts of the limiting factors, we assume

s(0, 0, . . . , 0) = 0, ri(0) = 0, i = 1, 2, . . . , n. (8)

This is not assumed in the preceding works of competitive exclusion principle [3, 11]
but is necessary in our work to specify the situation that some limiting factor is
absent. In our case, the condition (4) becomes the condition that

(∂ui/∂yi)(yi, z) > 0, (∂ui/∂z)(yi, z) > 0,
(∂ri/∂xi)(xi) < 0, (∂s/∂xi)(x1, x2, . . . , xn) < 0

(9)

for all i ∈ {1, 2, . . . , n}, (yi, z) ∈ R2 and (x1, x2, . . . , xn) ∈ Rn
+.
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If the common limiting factor z is removed (see Fig. 1 (i)), our system is reduced
to

ẋi = xiui(ri(xi), 0), i = 1, 2, . . . , n,

where every species is isolated with each other. Since (9) is assumed, it is natural
to assume that

ui(0, 0) > 0, i = 1, 2, . . . , n. (10)

Otherwise, all species go extinct even with the common limiting factor z. Further-
more, if ui(ri(xi), 0) > 0 for all xi > 0, then xi increases unboundedly when xi is
initially positive. Therefore, it is natural to assume that

∃Ki > 0 : ui(ri(Ki), 0) = 0, i = 1, 2, . . . , n, (11)

where Ki should be unique. Under these assumptions, if the common limiting
factor z is removed, our system equilibrates at the globally asymptotically stable
equilibrium point (K1,K2, . . . ,Kn).

On the other hand, if all species-specific limiting factors yi are removed (see Fig.
1 (ii)), our system is reduced to

ẋi = ui(0, s(x1, x2, . . . , xn)), i = 1, 2, . . . , n. (12)

Let ei, i = 1, 2, . . . , n, be the standard bases of Rn. If ui(0, s(xiei)) > 0 for all
xi > 0, then xi increases unboundedly when all species but species i is absent (i.e.,
when only xi is initially positive). Therefore, it is natural to assume that

∃Li > 0 : ui(0, s(Liei)) = 0, i = 1, 2, . . . , n, (13)

where Li should be unique. Denote z∗i = s(Liei). Then z∗i is the critical value
of the common limiting factor with which species i equilibrates in absence of yi.
Under these assumptions, system (12) is studied in [3] and the following result of
global competitive exclusion is obtained.

Theorem 2.1 ([3, Theorem D1]). Suppose that the inequalities

z∗1 < z∗2 < · · · < z∗n (14)

hold. Then every solution to (12) satisfies

lim
t→∞

x1(t) = L1, lim
t→∞

xi(t) = 0, i = 2, 3, . . . , n

if (x1(0), x2(0), . . . , xn(0)) ∈ Rn
+ and x1(0) > 0.

This theorem shows that competitive exclusion occurs due to competition via
the common limiting factor z and only the best competitor (species 1) can survive.
If species 1 is removed from the system, then only species 2, which is the second
best competitor, can survive. That is, the outcome is completely determined by
the amount of z∗i , at which species i equilibrates without yi. This result is known
as an R∗ rule, which states that the dominant species suppresses resources to a
lower level than any other competing species, or a P ∗ rule, which states that the
dominant species withstands the higher predator density than any other species [8].

In the subsequent sections, we study system (1) satisfying all assumptions men-
tioned above except (11), which is not necessary to derive mathematical results
below. The system is summarized as system (1) satisfying

(H): There exist smooth functions ui : R2 → R, ri : R+ → R, i = 1, 2, . . . , n,
and s : Rn

+ → R such that the conditions (5), (6), (7), (8), (9), (10), and (13)
are fulfilled.
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3. Equilibria and stability. In this section, we investigate the equilibrium points
of system (1) satisfying (H). The investigation is helped with the concept of sat-
urated equilibrium points. Especially, this concept helps to consider uniqueness of
asymptotically stable equilibrium points. In the following subsections, we introduce
the concept of saturated equilibrium points and recall that the concept is equiva-
lent to the solution to a certain nonlinear complementarity problem. Then using
a general result of nonlinear complementarity problems, we show that our system
has a unique saturated equilibrium point and reveal its characteristic property. A
global stability problem and an application to an affine case are finally addressed.

3.1. Saturated equilibrium points and nonlinear complementarity prob-
lems. For (column) vectors x = (xi) and y = (yi) in Rn, x ≥ y implies that xi ≥ yi
for all i, and x> denotes the transpose of the vector x. The transpose of a matrix
A is denoted by A>. Define supp(x) := {i : xi > 0}. Saturated equilibrium points
introduced in [6, 7] and nonlinear complementarity problems are defined as follows.

Definition 3.1 (saturated equilibrium point). An equilibrium point x∗ ≥ 0 of
system (1) is said to be saturated (resp. strictly saturated) if gi(x

∗) ≤ 0 for all i
(resp. gi(x

∗) < 0 for all i /∈ supp(x∗)).

Definition 3.2 (nonlinear complementarity problem). For the function G : Rn →
Rn, the problem of finding x satisfying

x ≥ 0, G(x) ≥ 0, x>G(x) = 0

is called the nonlinear complementary problem with respect to G and is denoted by
NCP(G).

Let x∗ = (x∗i ) be an equilibrium point of system (1). Then

x∗i = 0 i /∈ supp(x∗) and gi(x
∗) = 0 i ∈ supp(x∗).

By definition, any positive equilibrium point x∗ is saturated. Suppose that x∗ is
not positive. Then the growth rates of all missing species are nonpositive at x∗.
Thus any missing species cannot increase their population sizes around a saturated
equilibrium point. In this sense, a saturated equilibrium point is invulnerable to
species invasion.

It is straightforward to show that the problem of finding a saturated equilibrium
point of system (1) is equivalent to solving the nonlinear complementarity problem
NCP(−G) with G = (g1, g2, . . . , gn)>. This equivalence was pointed out in [17, 18].

3.2. Uniqueness of saturated equilibrium points. Using a known result on
NCP, we examine uniqueness of saturated equilibrium points of our system. The
following class of functions is important to ensure uniqueness of solutions to NCP.

Definition 3.3 (P-functions). Let D ⊂ Rn. G = (g1, g2, . . . , gn)> : D → Rn is said
to be a P-function if x,y ∈ D and x 6= y implies

max
1≤i≤n

(xi − yi)(gi(x)− gi(y)) > 0.

The following theorem is fundamental to show that our system has a unique
saturated equilibrium point.

Theorem 3.4 ([13, Theorem 2.3]). If G : Rn
+ → Rn is a P-function, then NCP(G)

has at most one solution.
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Using this theorem, we prove that our system has a unique saturated equilibrium
point. To this end, we introduce two important classes of matrices.

Definition 3.5 (VL-stable matrix). An n × n matrix A is said to be VL-stable if
there exists a positive diagonal matrix D such that DA+A>D is negative definite,
i.e., there exist positive numbers d1, d2, . . . , dn such that

n∑
i=1

n∑
j=1

diaijxixj < 0

for all x 6= 0.

Definition 3.6 (P-matrix). An n × n matrix A is said to be a P-matrix if x 6= 0
implies

max
1≤i≤n

xi(Ax)i > 0.

By the well-known Liapunov theorem, A is stable if it is VL-stable. A VL-
stable matrix is also called a dissipative matrix [14] and Sw-matrix [19] (see also
[10, Definition 4.4’]). The following theorem shows the well-known relevance of the
class of VL-stable matrices to those of P-matrices.

Theorem 3.7 (e.g, [20, Theorem 2]). If A is VL-stable, then −A is a P-matrix.

Let DxG(x) be the Jacobi matrix of G evaluated at x. The following theorem
provides a sufficient condition that a given function G is a P-function.

Theorem 3.8 ([12, Theorem 5.2]). Let D be a rectangular region of Rn and G :
D → Rn be differentiable. If DxG(x) is a P-matrix at every x ∈ D, then G is a
P-function.

Application of Theorems 3.7 and 3.8 to the growth rate function G = (g1, g2, . . . ,
gn)> of system (1) leads to the following theorem.

Theorem 3.9. System (1) satisfying (H) has a unique saturated equilibrium point.
If the saturated equilibrium point is positive, it is (locally) asymptotically stable.

Proof. If a given matrix A is of the form A = −diag(q)−vw> with positive vectors
q = (qi), v = (vi) and w = (wi) ∈ Rn, then A is VL-stable. In fact, with the
diagonal matrix D = diag(w1/v1, . . . , wn/vn),

x>(DA + A>D)x = −2

{
(w>x)2 + q1

w1

v1
x2
1 + · · ·+ qn

wn

vn
x2
n

}
< 0

holds for every x 6= 0. This implies that A is VL-stable. Since the Jacobi matrix of
G is

DxG = diag

(
∂u1

∂y1

dr1
dx1

, . . . ,
∂un

∂yn

drn
dxn

)
+


∂u1

∂z
...

∂un

∂z


(

∂s

∂x1
, . . . ,

∂s

∂xn

)
,

(∂ui/∂yi)(dri/dxi) < 0, ∂ui/∂z > 0, and ∂s/∂xi < 0, the matrix DxG(x) is VL-
stable irrespective of x ∈ Rn

+. Thus Theorems 3.7 and 3.8 show that −G is a
P-function on Rn

+ and Theorem 3.4 ensures that system (1) satisfying (H) has at
most one saturated equilibrium point. Existence of the saturated equilibrium point
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is ensured if system (1) satisfying (H) is dissipative, i.e., there exists a compact for-
ward invariant set that attracts every point in Rn

+ [5, Theorem 2]. The dissipativity
follows since

ẋi = xiui(ri(xi), s(x1, x2, . . . , xn))

≤ xiui(ri(0), s(xiei)) = xiui(0, s(xiei)) < 0

for all xi ≥ 0 sufficiently large.
Let x∗ = (x∗i ) be the positive saturated equilibrium point. The Jacobi matrix

J = (∂ẋi/∂xj) of system (1) evaluated at x∗ is of the form

∂ẋi

∂xj
= x∗i

∂gi
∂xj

(x∗).

In the same way as above, we see that J is VL-stable, thus it is stable. Therefore,
x∗ is asymptotically stable.

Note that the result of this theorem applies to every subsystem of (1) satisfying
(H). Therefore, every boundary equilibrium point x̂ is asymptotically stable within
the subsystem {x ∈ Rn

+ : xi = 0 ∀i /∈ supp(x̂)}. Furthermore, if the boundary
equilibrium point x̂ is strictly saturated, then it is asymptotically stable in the full
system since gi(x̂), i /∈ supp(x̂), is a transversal eigenvalue (see [6, 7]).

3.3. Equilibrium structure. We examine the characteristic property of the sat-
urated equilibrium point, at which our system is likely to equilibrate.

Theorem 3.10. Let x∗ = (x∗i ) be the saturated equilibrium point of system (1)
satisfying (H). If (14) is satisfied, then there exists a k ≥ 1 such that supp(x∗) =
{1, 2, . . . , k}.

Proof. Let k = max supp(x∗). Suppose that supp(x∗) = {1, 2, . . . , k} does not
hold. Then there exists l < k such that x∗l = 0. Let z∗ = s(x∗). Since x∗k > 0, we
have uk(rk(x∗k), z∗) = 0. Recall that z∗i is the constant satisfying ui(0, z

∗
i ) = 0. If

z∗k ≥ z∗, then the monotonicity assumption implies 0 = uk(rk(x∗k), z∗) < uk(0, z∗) ≤
uk(0, zk) = 0. This is a contradiction. Thus z∗k < z∗. Then, by the monotonicity
assumption, we have ul(0, z

∗) > ul(0, z
∗
k) > ul(0, z

∗
l ) = 0. This implies that x∗ is

not saturated. This is a contradiction. Thus x∗l > 0 for all l < k.

Note that, using the method proposed by Shigesada, Kawasaki, and Teramoto
[15], the index k can be calculated from the parameters if G = (g1, g2, . . . , gn)> is
an affine function (see Section 3.5).

Theorem 3.10 shows that the rank determined by the competition through the
common limiting factor z is still important even with the species-specific limiting
factors yi. Because of the sign pattern of x∗, invasion of high rank species could
lead to extinction of low rank species. For instance, consider a three-species system
with x∗ = (+,+, 0) and suppose that the system is at the equilibrium (0, 0,+).
Then the theorem suggests that the invasions of species 1 and 2 succeed and lead to
the extinction of species 3. Furthermore, the theorem suggests that an endangered
species cannot be saved by improving the relation to its species-specific limiting
factor. In fact, at the saturated equilibrium point x∗, an extinct species i satisfies
gi(x

∗) = ui(0, s(x
∗)) ≤ 0, which does not increase by improving the relation to

yi. Thus such an improvement does not change the stability of x∗. For instance,
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consider the case where

ui(yi, z) = bi(1 + yi) + aiz, bi > 0, ai > 0

yi = −xi/Ki, Ki > 0.

Then, in absence of the common limiting factor z, species i with larger Ki is more
abundant. However, if the common limiting factor z is present, then increasing Ki

does not help to save species i since z∗i = −bi/ai does not depend on Ki. The index
k

Theorem 3.11. Let x̂ = (x̂i) and x̌ = (x̌i) be distinct equilibrium ponts of system
(1) satisfying (H). If ∅ 6= supp(x̂) ⊂ supp(x̌), then ẑ = s(x̂) > ž = s(x̌) and x̂i > x̌i

for all i ∈ supp(x̂).

Proof. Since x̂ and x̌ are distinct equilibrium points, supp(x̂) 6= supp(x̌) holds.
Otherwise, the subsystem {x ∈ Rn

+ : xi = 0 ∀i /∈ supp(x̂) = supp(x̌)} has two
saturated equilibrium points.

Let ẑ = s(x̂), ŷi = ri(x̂i), ž = s(x̌), and y̌i = ri(x̌i). Suppose that ẑ ≤ ž. Then
for every i ∈ supp(x̂), 0 = ui(ŷi, ẑ) ≤ ui(ŷi, ž). Thus ŷi ≥ y̌i holds. Otherwise
ui(y̌i, ž) = 0 does not hold. Therefore, for every i ∈ supp(x̂), we have ŷi ≥ y̌i,
which implies x̂i ≤ x̌i. Then ẑ = s(x̂) > s(x̌) = ž (note that supp(x̂) ⊂ supp(x̌),
supp(x̂) 6= supp(x̌)). Thus we have a contradiction. Therefore, ẑ > ž.

Let i ∈ supp(x̂). Since 0 = ui(ŷi, ẑ) > ui(ŷi, ž), we have ŷi = ri(x̂i) < y̌i = ri(x̌i),
which implies x̂i > x̌i.

This theorem implies that after successful invasion of new species, the amount
of the common limiting factor z decreases and the population sizes of preexisting
species decrease.

3.4. Global stability. To study the global stability of system (1), we introduce
the following class of functions: G : Rn

+ → Rn is said to be a strongly monotone
function on Rn

+ if there exists a constant K > 0 such that

(x− y)>(G(x)−G(y)) ≥ K(x− y)>(x− y)

for all x,y ∈ Rn
+. The usefulness of this class of functions in the study of eco-

logical systems was noticed by Takeuchi and Adachi [18, Theorem 8]. A subtle
generalization of their result leads to the following theorem.

Theorem 3.12. Let x∗ be a unique saturated equilibrium point of system (1). If
there exists a positive diagonal matrix D = diag(d1, . . . , dn) such that −DG is
strongly monotone on Rn

+, then x∗ is globally asymptotically stable in Ω = {x =

(x1, . . . , xn)> ∈ Rn
+ : xi > 0 ∀i ∈ supp(x∗)}.

Proof. Let V (x) =
∑n

i=1 di(x
∗
i log xi − xi). This is the standard Liapunov function

proposed by Volterra. It is defined for all x ∈ Ω. The global maximum is attained
at x = x∗. Then there exists a positive number K > 0 such that

V̇ (x) =

n∑
i=1

di

(
x∗i

ẋi

xi
− ẋi

)

=

n∑
i=1

di(x
∗
i − xi)gi(x)

=

n∑
i=1

(xi − x∗i )(−digi(x) + digi(x
∗)) +

n∑
i=1

di(x
∗
i − xi)gi(x

∗)
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≥ K(x− x∗)>(x− x∗)−
∑

i/∈supp(x∗)

dixigi(x
∗).

The first term is positive for x 6= x∗ and the second term is nonpositive since x∗ is
saturated. Thus x∗ is globally asymptotically stable in Ω.

It is not clear under what conditions the theorem is applicable to system (1)
satisfying (H). However, the next subsection shows that it is sufficient to assume
that G is an affine function.

3.5. Affine cases. Suppose that G = (g1, g2, . . . , gn)> is an affine function, i.e.,
there exist a vector b = (bi) and an n×n matrix A = (aij) such that G(x) = b+Ax.
Then system (1) is reduced to the Lotka-Volterra equation

ẋi = xi(bi + (Ax)i), i = 1, 2, . . . , n. (15)

The following theorem reveals the condition that the vector b and the matrix A
have to satisfy if (H) is assumed.

Theorem 3.13. Suppose that G(x) = b +Ax. Then (H) is satisfied if and only if
b > 0 and there exist constant vectors q,v,w ∈ Rn such that

A = −diag(q)− vw>, q > 0, v > 0, w > 0. (16)

Proof. Suppose that (H) is satisfied. Eqs (8) and (10) imply b > 0. Since
DxG(x) = A holds for all x ∈ Rn

+, as shown in Theorem 3.9, there exist vector-
valued functions q(x) = (qi(xi)), v = (vi(x)), w = (wi(x)) such that

A = −diag(q(x))− v(x)w(x)>

for all x ∈ Rn
+. By (9), q(x), v(x), and w(x) are positive for all x ∈ Rn

+, and thus
aij < 0 for all i, j. Since aii = −qi(xi) − vi(x)wi(x) and aij = −vi(x)wj(x) for
i 6= j, we have

aii + qi(xi)

aji
=

aij
ajj + qj(xj)

=
vi(x)

vj(x)

and
aii + qi(xi)

aij
=

aji
ajj + qj(xj)

=
wi(x)

wj(x)
.

These equalities imply that every qi(xi) is constant and

vj(x) =
aj1

a11 + c
v1(x) and wi(x) =

a1i
a11 + c

w1(x),

where c = q1(x1). Thus

v(x)w(x)> =
v1(x)w1(x)

(a11 + c)2
(
a11, . . . , an1

)a11
...

a1n

 ,

where v1(x)w1(x) > 0 is constant since v(x)w(x)> = −A− diag(q(x)) is constant.
Thus (16) follows.

Suppose that b > 0 and A is of the form (16). Then it is clear that ui(yi, z) =
bi + qiyi + viz, ri(xi) = −xi and s(x) = −w>x fulfill the condition (H).
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It is straightforward to show that for G(x) = b + Ax with the matrix A of
the form (16), the function −DG(x) with D = diag(w1/v1, . . . , wn/vn) is strongly
monotone on Rn

+.
The Lotka-Volterra equation (15) with (16) is studied by Shigesada, Kawasaki,

and Teramoto [15] in a different context without the concept of limiting factors.
They examined the effects of interference competition on stability of ecosystems.
Theorem 3.13 shows that their results can be reviewed with the concept of limiting
factors. We see that their mathematical results can be covered by Theorems 3.9,
3.10, 3.11, and 3.12.

4. Conclusion. In order to reveal the value of the concept of limiting factors, we
studied a competitive system with a specific community structure that is visible
with limiting factors (see Fig. 2). The general theory of competitive exclusion only
predicts that competitive exclusion does not always occur in such a community
since the number of limiting factors exceeds the number of species. However, our
result shows that if interactions between species and limiting factors are specified,
more informative prediction is available. Theorem 3.9 shows stable coexistence is
realized at a unique saturated equilibrium point x∗. Therefore, the number of pos-
itive components of x∗ tells us how many species can coexist. Theorem 3.10 shows
that the species composition of the realized stable community is dependent on the
rank determined by the competition through the common limiting factor. A higher
rank species has priority of persistence over other lower rank species. Thus invasion
of high rank species could lead to extinction of low rank species. Theorem 3.11
shows that the amount of the common limiting factor changes directionally as suc-
cessful invasion of new species occurs. These results are strengthened by the global
stability analysis in Theorem 3.12. Theorem 3.13 reveals that the preceding work
by Shigesada, Kawasaki, and Teramoto [15], who studies the dynamics of a cer-
tain Lotka-Volterra equation, can be reviewed with the concept of limiting factors.
Their main results are covered by our general results on the equation of Kolmogorov
type. These results suggest that the specification of competitive systems with the
concept of limiting factors is sufficiently specific to obtain ecological insights and is
sufficiently general to include Lotka-Volterra equations as a special case.
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