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Abstract It is known that the behavior of a nonlinear semelparous Leslie matrix
model with the basic reproduction number close to one can be approximated by
a solution of a Lotka-Volterra differential equation. Furthermore, even in multi-
species cases, a similar approximation works as long as every species is semelparous.
This paper gives a mathematical basis to this approximation and shows that Lotka-
Volterra equations are helpful to study a certain bifurcation problem of multi-species
semelparous populationmodels.With the help of this approximationmethod, we find
an example of coexistence of two biennial populations with temporal segregation.
This example provides a new mechanism of producing population cycles.

Keywords Lotka-Volterra equations · Leslie matrix models · Bifurcation · Semel-
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1 Introduction

A species is said to be semelparous if it reproduces only once immediately before
death. Semelparous species are often observed in insects. In order to reveal a mech-
anism of producing population cycles observed in insect populations, Bulmer [1]
studied a nonlinear semelparous Leslie matrix model, which is an age-structured
population model for a semelparous species. One of the important conclusions of
this study is that population cycles occur if competition is more severe between than
within age-classes. After Bulmer [1], several papers have studied the dynamics of
nonlinear semelparous Leslie matrix models (e.g., see [2–6, 8, 11, 12, 15, 17]). In
particular, the papers [2–5] focus on bifurcations that occur around the extinction (or
population free) equilibrium and provide a clear mathematical formula expressing
Bulmer’s conclusion.
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In such bifurcation studies, the basic reproduction number R0 is used as a bifur-
cation parameter. SinceR0 represents the expected number of newborns reproduced
by an individual over a lifetime, population persistence is unlikely if R0 < 1 and
is likely if R0 > 1. In fact, the extinction equilibrium of a nonlinear semelparous
Leslie matrix model is stable ifR0 < 1 and is unstable ifR0 > 1. Therefore, at the
critical point R0 = 1, a branch of positive equilibria is expected to bifurcate from
the extinction equilibrium. The papers [2–5] provide a condition for the existence
and the stability of such a positive bifurcating branch. Cushing and Li [2] focus on
a two-age-class semelparous Leslie matrix model and provide a condition for sta-
ble bifurcations of positive equilibria (see also Cushing [3]). Furthermore, it is also
shown that if a branch of positive equilibria is unstable, a stable branch of 2-cycles
bifurcates from the extinction equilibrium. Therefore, an occurrence of population
cycles is predicted by the instability of bifurcating positive equilibria. These studies
are extended to the case where the number of age-classes is more than two. Cushing
[4] classifies the possible types of bifurcation in a three-age-class case. Furthermore,
Cushing and Henson [5] provides a condition for stable bifurcations of positive equi-
libria that is applicable even if the number of age-classes is arbitrary large.

The purpose of this paper is to provide a simple method of dealing with such a
bifurcation problem of nonlinear semelparous Leslie matrix models. The method is
motivated by the study of Diekmann and vanGils [7], who showed that a solution of a
nonlinear semelparous Leslie matrix model can be approximated by that of a Lotka-
Volterra (differential) equation. Our method shows that the stability of bifurcating
positive equilibria can be evaluated by that of positive equilibria of Lotka-Volterrra
equations. That is, our bifurcation problem can be reduced to a stability problem
of Lotka-Volterra equations. Since a solution of a multi-species semelparous pop-
ulation model can also be approximated by that of a Lotka-Volterra equation [13,
14], we develop our method in the form applicable to multi-species models. With
this method, we rediscover the result of Cushing and Henson [5] on a nonlinear
semelparous Leslie matrix model. Furthermore, our method allows us to study high
dimensional multi-species semelparous populationmodels and to construct an exam-
ple of population cycles in a competitive system of two biennial populations without
assuming severe between-age-class competition. The population cycle occurs as a
result of temporal segregation caused by severe age-specific species competition.
This example provides a new mechanism of population cycles.

This paper is organized as follows. Section2 introduces a multi-species semel-
parous population model, which is constructed by coupling multiple semelparous
Leslie matrix models. Section3 develops a bifurcation theory for a Kolmogorov
difference equation, and shows that a certain bifurcation problem of Kolmogorov
difference equations can be reduced to a stability problem of Lotka-Volterra equa-
tions. In order to apply the bifurcation theory to our bifurcation problem, Sect. 4
shows that a multi-species semelparous population model can be transformed to
a Kolmogorov difference equation, and Sect. 5 specifies the stability problem of
Lotka-Volterra equations that we need to examine. Section6 shows that the derived
stability problem of Lotka-Volterra equations can be reduced to a stability problem of
lower dimensional Lotka-Volterra equations if lifespans of species,which are positive
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integers, are pairwise coprime. Section7 examines the case where such a reduction
does not work and constructs an example that age-specific species interactions have
an essential impact on the stability of population dynamics. The example provides a
new mechanism of population cycles. Section8 includes a concluding remark.

2 Multi-species Semelparous Population Models

Let N ≥ 1 be the number of species. Suppose that species i has ni (≥ 2) age-classes.
Then there are n1 + n2 + · · · + nN =: n age-classes in total.We consider the interac-
tion among N species expressed by the following n-dimensional nonlinear difference
equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u[i,1],k+1 = fiσ[i,ni ](uk)u[i,ni ],k
u[i,2],k+1 = s[i,1]σ[i,1](uk)u[i,1],k

...

u[i,ni ],k+1 = s[i,ni−1]σ[i,ni−1](uk)u[i,ni−1],k

i = 1, 2, . . . , N . (1)

Here uk = (u1,k, u2,k, . . . , un,k)
� (the symbol � is used for vector or matrix trans-

pose) and for i ∈ {1, 2, . . . , N } the following notation is used to simplify the
expression:

[i, j] := n0 + n1 + · · · + ni−1 + j,

where n0 = 0 and j ∈ {1, 2, . . . , ni }. Therefore, for example, uk is also written as

uk = (u[1,1],k, . . . , u[1,n1],k︸ ︷︷ ︸
n1

, u[1,2],k, . . . , u[2,n2],k︸ ︷︷ ︸
n2

, . . . , u[N ,1],k, . . . , u[N ,nN ],k
︸ ︷︷ ︸

nN

)�.

The variable u[i, j],k denotes the number of individuals of age j ∈ {1, 2, . . . , ni }
of species i ∈ {1, 2, . . . , N } at time k ∈ {0, 1, 2, . . .}. The vital rates fiσ[i,ni ] and
s[i, j]σ[i, j] denote the number of newborns produced by an individual of age ni of
species i and the probability that an individual of age j of species i survives one unit
of time, respectively. It is assumed that each species has a single reproductive age-
class. Thus each species is assumed to be semelparous. The ability of each individual
of age j of species i is characterized by a single vital rate, either fiσ[i,ni ] or s[i, j]σ[i, j]. It
is assumed that fi and s[i, j] are positive constants and σ[i, j] is a positive function of the
population vector uk . We normalize the functions σ[i, j] by σ[i, j](0) = 1. This implies
that the constants fi and s[i, j] represent vital rates at low population sizes, and thus
the functions σ[i, j] solely determine how the vital rates depend on (both conspecific
and allospecific) population sizes. Under these assumptions, the nonnegative cone
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R
n
+ := {(u1, u2, . . . , un)� ∈ R

n : ui ≥ 0 for all i ∈ {1, 2, . . . , n}}

is forward invariant, i.e., uk ∈ R
n+ for all k ≥ 1 if u0 ∈ R

n+.
If N = 1, then system (1) is reduced to a nonlinear semelparous Leslie matrix

model, which is for instance studied in [1–6, 8, 11, 12, 15, 17].

3 Bifurcations in Kolmogorov Difference Equations

This section considers a bifurcation problem of the Kolmogorov difference equation

xi,k+1 = xi,kgi (ε, xk), i = 1, 2, . . . , n, (2)

where xk = (x1,k, x2,k, . . . , xn,k)
�. This difference equation has a parameter ε ∈ R.

We assume that each gi is aC2 function defined in a neighborhood of (0, 0) ∈ R × R
n

and satisfies gi (0, 0) = 1. A vector is said to be positive (resp. negative) if all
its components are positive (resp. negative). We are concerned with the positive
equilibria of system (2), which are given by the positive vectors x satisfying the
equation g(ε, x) = 1, where 1 is a column vector whose components are all 1 and
g(ε, x) := (g1(ε, x), g2(ε, x), . . . , gn(ε, x))�. We shall construct a positive equilib-
rium of system (2) near the origin 0 and show that such a positive equilibrium has
the same stability property as a positive equilibrium of the Lotka-Volterra equation

dxi
dt

= xi

(

ri +
n∑

j=1

ai j x j

)

, i = 1, 2, . . . , n, (3)

where

ri := ∂gi
∂ε

(0, 0), ai j := ∂gi
∂x j

(0, 0).

The positive equilibria of system (3) are given by the positive vectors x satisfying
the linear equation r + Ax = 0, where r := (r1, r2, . . . , rn)� and A := (ai j ). If A
is nonsingular, i.e., det A �= 0, then the equation has the unique solution x∗ :=
−A−1r, which might not be positive. In the following theorems, the matrix A is
always assumed nonsingular. Since the situation that the equality det A = 0 holds
is negligible, the nonsingularity assumption does not impose significant restrictions
on our results.

Theorem 1 Suppose that A is nonsingular. Then there exists a constant ε0 > 0
and a unique function x̂ : (−ε0, ε0) → R

n satisfying x̂(0) = 0 and g(ε, x̂(ε)) = 1.
Furthermore, if g is a Cd function (d ≥ 1), then so is x̂.

Proof By assumption, ∂g
∂x (0, 0) = A is nonsingular. Thus the conclusion of this the-

orem is an immediate consequence of the implicit function theorem. �	
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It is clear that x̂ is an equilibrium of system (2). Furthermore, around ε = 0, the
function x̂ is written in the form

x̂(ε) = x̂(0) + ε
dx̂
dε

(0) + O(ε2)

= εx∗ + O(ε2)

since x̂(0) = 0 and dx̂
dε

(0) = −(
∂g
∂x (0, 0))

−1 ∂g
∂ε

(0, 0) = −A−1r. Therefore, a branch
of positive equilibria of system (2) bifurcates from the origin as increasing (resp.
decreasing) ε through ε = 0 if x∗ is positive (resp. negative). That is, the bifurcation
is to the right if x∗ > 0 and to the left if x∗ < 0.

The Jacobi matrix of system (3) evaluated at x∗ is given by diag(x∗)A, where
diag(x∗) denotes the diagonal matrix

⎛

⎜
⎜
⎜
⎝

x∗
1 0 · · · 0
0 x∗

2 · · · 0
...

...
...

0 0 · · · x∗
n

⎞

⎟
⎟
⎟
⎠

.

The following theorem shows that the stability of x̂ constructed in Theorem 1 can
be evaluated by the stability of diag(x∗)A. A matrix is said to be stable if all its
eigenvalues have negative real part. For convenience, we denote the stability modulus
of a matrix M by

s(M) := max{Re λ : λ is an eigenvalue of M},

where Re λ denotes the real part of λ. Then M is stable if and only if s(M) < 0.

Theorem 2 If s(diag(x∗)A) < 0 (resp. s(diag(x∗)A) > 0), then the equilibrium
x̂(ε) of system (2) is asymptotically stable (resp. unstable) for all sufficiently small
ε > 0.

Proof Since x̂(ε) satisfies g(ε, x̂(ε)) = 1, the Jacobi matrix of system (2) evaluated
at x̂(ε) is

J (x̂(ε)) := ∂

∂x
diag(x)g(ε, x)

∣
∣
∣
∣
x=x̂(ε)

=
(

diag(g(ε, x)) + diag(x)
∂g
∂x

(ε, x)
) ∣

∣
∣
x=x̂(ε)

= I + diag
(
x̂(ε)

) ∂g
∂x

(
ε, x̂(ε)

)
,

where I is the identity matrix. Around ε = 0, this is written in the form

J (x̂(ε)) = I + ε (diag(x∗)A + O(ε)).
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Suppose that s(diag(x∗)A) < 0.Thenbecause of continuous dependence of eigen-
values of a matrix on its entries, there exists a constant εs ∈ (0, ε0) such that every
eigenvalue λ(ε) of diag(x∗)A + O(ε) satisfies

∣
∣
∣
∣λ(ε) + 1

ε

∣
∣
∣
∣ <

1

ε

for all ε ∈ (0, εs). This inequality represents the situation that the disk centered at− 1
ε

with radius 1
ε
contains all eigenvalues of diag(x∗)A + O(ε) on the complex plane.

Since ε > 0, the inequality is reduced to |1 + ελ(ε)| < 1, which implies that the
spectral radius of J (x̂(ε)) is less than one. Therefore, x̂(ε) is asymptotically stable
for all ε ∈ (0, εs).

Suppose that s(diag(x∗)A) > 0. Then diag(x∗)A has an eigenvalue λu with posi-
tive real part and diag(x∗)A + O(ε) has an eigenvalue λ(ε) satisfying λ(ε) → λu as
ε → 0. Therefore, there exists a constant εu ∈ (0, ε0) such that

∣
∣
∣
∣λ(ε) + 1

ε

∣
∣
∣
∣ >

1

ε

holds for all ε ∈ (0, εu). Since ε > 0, the inequality is equivalent to |1 + ελ(ε)| > 1,
which implies that the spectral radius of J (x̂(ε)) is larger than one. Therefore, x̂(ε)
is unstable for all ε ∈ (0, εu). �	

4 Derivation of Kolmogorov Difference Equations from
System (1)

Define the basic reproduction number Ri
0 for species i by Ri

0 := s[i,1]s[i,2] . . .
s[i,ni−1] fi . This number represents the expected number of newborns reproduced
by an individual of species i per lifetime at low population sizes. We are concerned
with a bifurcation that occurs in system (1) at R1

0 = R2
0 = · · · = RN

0 = 1. Since it
is difficult to treatR1

0 ,R
2
0 , . . . ,R

N
0 as multiple independent bifurcation parameters,

we only consider the case where the vector (R1
0 ,R

2
0 , . . . ,R

N
0 )� changes along a

certain one-dimensional manifold and treat a one-parameter bifurcation problem.
More precisely, in order to make the derived Lotka-Volterra equation simple, we
choose an arbitrary fixed vector c = (c1, c2, . . . , cN )� and consider bifurcations by
changing the parameters R1

0 ,R
2
0 , . . . ,R

N
0 with maintaining the relation

(
log(R1

0 )
ν
n1 , log(R2

0 )
ν
n2 , . . . , log(RN

0 )
ν
nN

)� = ε(c1, c2, . . . , cN )�, ε ∈ R (4)

where ν is the least common multiple of n1, n2, . . . , nN , and thus species i experi-
ences ν

ni
generations within ν time steps and (Ri

0)
ν
ni represents the expected number

of descendants of species i per individual per ν time step at lowpopulation sizes. Since
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the above relation is assumed to be always satisfied when we consider a bifurcation
problem of system (1), the new parameter ε instead ofR1

0 ,R
2
0 , . . . ,R

N
0 shall be used

as a bifurcation parameter. Although our approach is practically sufficient to examine
the dynamics of system (1) with the parameters aroundR1

0 = R2
0 = · · · = RN

0 = 1,
there could exist exceptional cases that our approach is unable to treat (see Sect. 9).
Note that increase of ε implies increase ofRi

0 if ci > 0 and decrease ofRi
0 if ci < 0.

To include ε as an explicit parameter of system (1), we replace fi by e
ci ni

ν ε

s[i,1]s[i,2]...s[i,ni−1] .
Then system (1) becames

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u[i,1],k+1 = e
ci ni

ν ε

s[i,1]s[i,2]...s[i,ni−1] σ[i,ni ](uk)u[i,ni ],k
u[i,2],k+1 = s[i,1]σ[i,1](uk)u[i,1],k

...

u[i,ni ],k+1 = s[i,ni−1]σ[i,ni−1](uk)u[i,ni−1],k

i = 1, 2, . . . , N . (5)

Define

Di := diag(1, s[i,1], s[i,1]s[i,2], . . . s[i,1]s[i,2] . . . s[i,ni−1]), i = 1, 2, . . . , N ,

and D := diag(D1, D2, . . . , DN ). The rescaling of system (5) with x := D−1u gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x[i,1],k+1 = e
ci ni

ν
εσ[i,ni ](Dxk)x[i,ni ],k

x[i,2],k+1 = σ[i,1](Dxk)x[i,1],k
...

x[i,ni ],k+1 = σ[i,ni−1](Dxk)x[i,ni−1],k

i = 1, 2, . . . , N .

Let πi , i = 1, 2, . . . , N , be the cyclic permutation

( [i, 1] [i, 2] · · · [i, ni ]
[i, ni ] [i, 1] · · · [i, ni − 1]

)

and Pπi be its permutation matrix. The product of π1, π2, . . . , πN is denoted by π

and its permutation matrix is denoted by Pπ . Define

Si (ε, x) := Pπi diag(σ[i,1](Dx), . . . , σ[i,ni−1](Dx), e
ci ni

ν
εσ[i,ni ](Dx)), i = 1, 2, . . . , N ,

and S(ε, x) := diag(S1(ε, x), S2(ε, x), . . . , SN (ε, x)). Then the rescaled equation is
written as

xk+1 = S(ε, xk)xk .
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Let ξ(x) := S(ε, x)x. Since ν is a common multiple of the periods of the cyclic per-
mutations π1, π2, . . . , πN , the matrixG(ε, x) := S(ε, ξ ν−1(x)) . . . S(ε, ξ(x))S(ε, x)
is diagonal. Thus the map ξ ν , i.e.,

yk+1 = G(ε, yk)yk (6)

is a Kolmogorov difference equation. The behavior of yk shows the stroboscopic
behavior of xk with period ν.

5 Lotka-Volterra Equations

In the previous two sections, it was shown that system (1) is reduced to aKolmogorov
difference equation and its bifurcation problem is reduced to a stability problem of a
Lotka-Volterra equation. In this section, we shall identify the Lotka-Volterra equation
that we need to study.

Define the n × n matrix B = (bi j ) by

bi j := ∂σi

∂u j
(0),

i.e., B = ∂σ
∂u (0), where σ = (σ1, σ2, . . . , σn)

�. The parameter b[i,k][ j,l] represents the
intensity of density dependent effect from age-class l of species j to age-class k of
species i at low population sizes. The interaction between age-class k of species i
and age-class l of species j is competitive if b[i,k][ j,l] < 0 and b[ j,l][i,k] < 0, mutual-
istic if b[i,k][ j,l] > 0 and b[ j,l][i,k] > 0, and antagonistic if b[i,k][ j,l]b[ j,l][i,k] < 0 at low
population sizes. Let g = (g1, g2, . . . , gn)� be the diagonal entries of G defined in
the previous section, i.e., diag(g(ε, x)) = G(ε, x). Then it is clear that g(0, 0) = 1
holds. Furthermore, we have

∂g[i,1]
∂ε

(0, 0) = ∂g[i,2]
∂ε

(0, 0) = · · · = ∂g[i,ni ]
∂ε

(0, 0) = ci , i = 1, 2, . . . , N .

Thus gi can be written as

gi (ε, x) = exp

(

ε
∂gi
∂ε

(0, 0)
) ν−1∏

k=0

σπ k (i)(Dξ k(x)), i = 1, 2, . . . , n,
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whose partial derivative with respect to x j evaluated at (ε, x) = (0, 0) is

∂gi
∂x j

(0, 0) = ∂

∂x j
exp

(

ε
∂gi
∂ε

(0, 0)
) ν−1∏

k=0

σπ k (i)(Dξ k(x))
∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

ν−1∏

k=0
k �=l

σπ k (i)(Dξ k(x))
∂

∂x j
σπ l (i)(Dξ l(x))

∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

ν−1∏

k=0
k �=l

σπ k (i)(Dξ k(x))
∂

∂u
σπ l (i)(Dξ l(x))

∂

∂x j
Dξ l(x)

∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

ν−1∏

k=0
k �=l

σπ k (i)(Dξ k(x))

(
∂σ

∂u
(Dξ l(x))D

∂ξ l

∂x

)

π l (i), j

∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

(P−l
π BDPl

π )i j .

This implies

∂g
∂x

(0, 0) = BD + P−1
π BDPπ + · · · + P−ν+1

π BDPν−1
π .

Thus Theorems 1 and 2 suggest that the Lotka-Voterra equation (3) satisfying

r = (c1, c1, . . . , c1︸ ︷︷ ︸
n1

, c2, c2, . . . , c2︸ ︷︷ ︸
n2

, . . . , cN , cN , . . . , cN︸ ︷︷ ︸
nN

)�

A = BD + P−1
π BDPπ + · · · + P−ν+1

π BDPν−1
π

(7)

is helpful to study our bifurcation problem of system (5).
Each parameter in (7) has an important biological meaning. The parameters

c1, c2, . . . , cN represent the ratio of log(R1
0 )

ν
n1 , log(R2

0 )
ν
n2 , . . . , log(RN

0 )
ν
nN , inwhich

the basic reproduction numbers are comparedwith the same time scale. By definition,
the ([i, k], [ j, l])-entry of A is written as

a[i,k][ j,l] =
ν−1∑

Δ=0

(
BD

)

πΔ([i,k])πΔ([ j,l]).

Since π is the product of the cyclic permutations π1, π2, . . . , πN , every entry of B
that appears in the right-hand side of this equation has the first subscript belonging
to {[i, 1], [i, 2], . . . , [i, ni ]} and the second subscript belonging to {[ j, 1], [ j, 2], . . . ,
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[ j, n j ]}. Therefore, every a[i,k][ j,l], k = 1, 2, . . . , ni , l = 1, 2, . . . , n j , indicates the
intensity of an effect of species j on species i at low population sizes. In the subse-
quent sections, we shall see that age-specific effects of density dependence between
species i and j intricately depend on ni and n j .

The rest of this section provides some basic properties of system (3) satisfying (7).

Lemma 1 The vector r and the matrix A defined by (7) satisfy Pπr = r and
Pπ AP−1

π = A.

Proof It is clear that the first equality holds. Since Pν
π = P−ν

π = I , we have
PπBDP−1

π = P−ν+1
π BDPν−1

π . Thus

Pπ AP
−1
π = Pπ (BD + P−1

π BDPπ + · · · + P−ν+1
π BDPν−1

π )P−1
π

= A,

which shows that the second equality holds. �	
Define the N × n matrix T = (ti j ) by

ti j :=
{
1, j ∈ {[i, 1], [i, 2], . . . , [i, ni ]}
0, j /∈ {[i, 1], [i, 2], . . . , [i, ni ]}.

For an n × n matrix M = (mi j ), define the N × N matrix M̄ = (m̄i j ) by

m̄i j := 1

nin j

ni∑

k=1

n j∑

l=1

m[i,k][ j,l],

similarly, for ann-dimensional vectorv=(v1, v2, . . . , vn)
�, define the N -dimensional

vector v̄ = (v̄1, v̄2, . . . , v̄N )� by

v̄i = 1

ni

ni∑

k=1

v[i,k].

Lemma 2 Let r and A be the vector and the matrix defined by (7). Suppose that A
is nonsingular. Then x∗ = −A−1r satisfies

x∗
[i,1] = x∗

[i,2] = · · · = x∗
[i,ni ] = − 1

ni
( Ā−1r̄)i , i = 1, 2, . . . , N .

Thus r̄ + ĀT x∗ = 0 is fulfilled.
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Proof Multiplying the both sides of r + Ax∗ = 0 on the left by Pπ , we have
Pπr + Pπ AP−1

π Pπx∗ = 0. Since Pπr = r and Pπ AP−1
π = A hold, we obtain r +

APπx∗ = 0. The same argument shows that r + Ax∗ = r + APπx∗ = · · · = r +
APν−1

π x∗ = 0, i.e., Ax∗ = APπx∗ = · · · = APν−1
π x∗ = −r. Since A is nonsingular,

x∗ = Pπx∗ = · · · = Pν−1
π x∗. This shows that x∗

[i,1] = x∗
[i,2] = · · · = x∗

[i,ni ] for each
i ∈ {1, 2, . . . , N }. Then we further obtain 0 = r + Ax∗ = r̄ + Ax∗ = r̄ + ĀT x∗. �	

If N = 1, then π is a cyclic permutation of {1, 2, . . . , n}. Thus all components of
r are identical and A is a circulant matrix. In [10], the Lotka-Volterra equation with
such r and A is studied. It is called the May-Leonard system [16] if n = 3.

6 Stable Bifurcations in Multi-species Semelparous Models

By combing the results of the previous sections, we can establish theorems on bifur-
cations of positive equilibria of system (5). In the theorems of this section, we focus
on the case x∗ > 0 since the case x∗ < 0 can be examined by changing the signs of
c1, c2, . . . , cN .

Theorem 3 Assume that σ is a C2 function. Let r and A be the vector and the matrix
defined by (7). Suppose that A is nonsingular and x∗ = −A−1r > 0. Then system (5)
has a unique branch of positive equilibria bifurcating from the origin as increasing
ε through ε = 0. The bifurcation is stable if s(diag(x∗)A) < 0 and is unstable if
s(diag(x∗)A) > 0.

Proof By Theorem 1, the map ξ ν has a unique branch of positive equilibria writ-
ten in the form x̂(ε) = εx∗ + O(ε2). It is obvious that all of x̂, ξ(x̂), . . . , ξ ν−1(x̂)
are positive equilibria of ξ ν bifurcating from the origin. However, it is ensured that
x̂, ξ(x̂), . . . , ξ ν−1(x̂) are identical since a branch of positive equilibria of ξ ν bifur-
cating from the origin is unique. This implies that x̂ is a positive equilibrium of the
map ξ , i.e., system (5). The other statements follow from Theorem 2. �	
In the rest of this section, we consider the sign of s(diag(x∗)A). To derive the fol-
lowing results, a certain property of the integers n1, n2, . . . , nN plays an important
role. Two integers are said to be coprime if their greatest common divisor is 1. A set
of integers is said to be pairwise coprime if every couple of different integers in this
set is coprime.

Lemma 3 Suppose that M = (mi j ) is an n × n matrix satisfying Pπ MP−1
π = M.

If ni and n j are coprime for some disjoint i, j ∈ {1, 2, . . . , N }, then there exists a
constant μ such that m[i,k][ j,l] = μ for all k ∈ {1, 2, . . . , ni } and l ∈ {1, 2, . . . , n j }.
Proof Since π has the cycles visiting cyclically all elements of {[i, 1], [i, 2], . . . ,
[i, ni ]} and {[ j, 1], [ j, 2], . . . , [ j, n j ]}, respectively, it is sufficient to show that for
every integer Δ there exists an integer k such that
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mπ k ([i,1])π k+Δ([ j,1]) = m[i,1][ j,1].

Let Δ be an arbitrary integer. Then there exists an integer s such that π s+Δ([ j, 1]) =
[ j, 1]. Since ni and n j are coprime, {n j , 2n j , . . . , nin j } is a complete system of
incongruent residues of mod ni (e.g., see [9, Theorem 56]). Therefore, there exists
an integer t such that π tn j+s([i, 1]) = [i, 1]. For k = tn j + s, the desired equation
is satisfied as follows:

mπ k ([i,1])π k+Δ([ j,1]) = mπ
tn j+s

([i,1])π tn j+s+Δ
([ j,1])

= m[i,1]π tn j ([ j,1])
= m[i,1][ j,1].

�	
For an n × n matrix M , we denote by Mi j the ni × n j submatrix of M with

{[i, 1], [i, 2], . . . , [i, ni ]} and {[ j, 1], [ j, 2], . . . , [ j, n j ]} as the sets of row and col-
umn indices, respectively.Write an ni × n j matrixMi j (possibly i = j) in partitioned
form

Mi j =
(
m[i,1][ j,1] q1[Mi j ]�
q2[Mi j ] Q[Mi j ]

)

.

Then we obtain the following lemma.

Lemma 4 Assume that {n1, n2, . . . , nN } is pairwise coprime. Suppose that M =
(mi j ) is an n × n matrix satisfying Pπ MP−1

π = M. Then the characteristic equation
of M is given by

det

(

λI − diag(n1, n2, . . . , nN )M̄

) N∏

i=1

det

(

λI + q2[Mii ]1� − Q[Mii ]
)

= 0.

Proof Define the ni × ni matrix Hi by

Hi :=
(
1 −1�
0 I

)

,

which is nonsingular and its inverse is

H−1
i =

(
1 1�
0 I

)

.
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Then H−1
i Mi j Hj is equivalent to

(
1 1�
0 I

)(
m[i,1][ j,1] q1[Mi j ]�
q2[Mi j ] Q[Mi j ]

) (
1 −1�
0 I

)

=
(
1 1�
0 I

)(
m[i,1][ j,1] −m[i,1][ j,1]1� + q1[Mi j ]�
q2[Mi j ] −q2[Mi j ]1� + Q[Mi j ]

)

=
(
m[i,1][ j,1] + 1�q2[Mi j ] −m[i,1][ j,1]1� + q1[Mi j ]� − 1�q2[Mi j ]1� + 1�Q[Mi j ]

q2[Mi j ] −q2[Mi j ]1� + Q[Mi j ]
)

=
(
m[i,1][ j,1] + 1�q2[Mi j ] 0�

q2[Mi j ] −q2[Mi j ]1� + Q[Mi j ]
)

,

where we used the fact that each column sum of Mi j is identical to obtain the last
equality. By Lemma 3, if i �= j , then there exists a constant μi j such that all entries
of Mi j are equal to μi j . Thus if i �= j , then

H−1
i Mi j Hj =

(
niμi j 0�
μi j1 O

)

,

whereO denotes the zeromatrix.Wedefine the block diagonalmatrix H := diag(H1,

H2, . . . , HN ), whose inverse is H−1 = diag(H−1
1 , H−1

2 , . . . , H−1
N ). Then we have

H−1HM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1 0� n1μ12 0� · · · n1μ1N 0�
q2(M11) Γ1 μ121 O · · · μ1N1 O
n2μ21 0� γ2 0� · · · n2μ2N 0�
μ211 O q2(M22) Γ2 · · · μ2N1 O

...
...

...
...

...
...

nNμN1 0� nNμN2 0� · · · γN 0�
μN11 O μN21 O · · · q2(MNN ) ΓN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where γi := m[i,1][i,1] + 1�q2[Mii ] and Γi := −q2[Mii ]1� + Q[Mii ]. Thus it is
straightforward to show that det(λI − H−1MH) is equivalent to

det
(
λI − diag(n1, n2, . . . , nN )M̄

)
N∏

i=1

det
(
λI + q2[Mii ]1� − Q[Mii ]

)

where the fact that
⎛

⎜
⎜
⎜
⎝

γ1 n1μ12 · · · n1μ1N

n2μ21 γ2 · · · n2μ2N
...

...
...

nNμN1 nNμN2 · · · γN

⎞

⎟
⎟
⎟
⎠

= diag(n1, n2, . . . , nN )M̄

is used. Thus we obtain the desired form of the characteristic equation of M . �	



16 R. Kon

Lemma4with N = 1 shows that the characteristic equation ofMii is equivalent to

det(λI − ni m̄ii ) det(λI + q2[Mii ]1� − Q[Mii ]) = 0.

Therefore, s(Mii )<0 (resp. s(Mii )>0) if and only if both s(Q[Mii ] − q2[Mii ]1�) <

0 and m̄ii < 0 (resp. either s(Q[Mii ] − q2[Mii ]1�) > 0 or m̄ii > 0).
The following theorem shows that the stability of diag(x∗)A can be evaluated by

the stability of some matrices whose sizes are smaller than that of diag(x∗)A.

Theorem 4 Assume that {n1, n2, . . . , nN } is pairwise coprime. Let r and A be
the vector and the matrix defined by (7). Suppose that A is nonsingular, x∗ =
−A−1r > 0, and āii < 0, i = 1, 2, . . . , N. Then s(diag(x∗)A) < 0 if and only if all
of s(diag(T x∗) Ā) and s(Aii ), i = 1, 2, . . . , N, are negative, and s(diag(x∗)A) > 0
if and only if some of s(diag(T x∗) Ā) and s(Aii ), i = 1, 2, . . . , N, are positive.

Proof Since diag(x∗)A satisfies Pπdiag(x∗)AP−1
π =diag(x∗)Pπ AP−1

π = diag(x∗)A,
we can apply Lemma 4 to diag(x∗)A. Then the characteristic equation of diag(x∗)A
is equivalent to

det(λI − diag(n1, n2, . . . , nN )diag(x∗)A)

×
N∏

i=1

det

(

λI + q2[(diag(x∗)A)i i ]1� − Q[(diag(x∗)A)i i ]
)

= det

(

λI − diag(T x∗) Ā
) N∏

i=1

x̄∗
i det

(
λ

x̄∗
i

I + q2[Aii ]1� − Q[Aii ]
)

= 0.

This characteristic equation and the remark after Lemma 4 completes the proof. �	
Aswe shall see inSect. 8, the assumption that {n1, n2, . . . , nN } is pairwise coprime

is essential to derive the conclusion of Theorem 4. It is known that the probability
that two integers are coprime is 6/π2 ≈ 0.6 (see [9, Theorem 332]). Therefore, if
a community is composed of randomly chosen two semelparous species, then the
assumption of Theorem 4 is satisfied with the probability 6/π2. However, if the
number of species is large, the probability becomes very small. A natural situation
that Theorem 4 can apply might be found when we consider evolution of lifespans.
Since consecutive integers are coprime, Theorem 4 is applicable if n1, n2, . . . , nN

are consecutive integers. This situation might happen if we consider an interaction
among allied species that are produced by gradual evolution of lifespans.
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7 Interpretation of Stability Conditions

7.1 The Sign of āi i

By definition, we obtain

āi i = ν

n2i

(

b[i,1][i,1] + b[i,1][i,2]s[i,1] + · · · + b[i,1][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]

+b[i,2][i,1] + b[i,2][i,2]s[i,1] + · · · + b[i,2][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]

+ · · · + b[i,ni ][i,1] + b[i,ni ][i,2]s[i,1] + · · · + b[i,ni ][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

.

Since only the entries of the diagonal block Bii of the matrix B appear in this form,
āi i represents a gross effect of conspecific density dependence within species i at
low population sizes. Thus the assumption āi i < 0 implies density-dependent self-
inhibition in species i at low population sizes. On the other hand, the inequality
āi i > 0 implies positive density dependence, i.e., Allee effect, in species i . Note that
even if āi i < 0, some b[i, j][i,k], j, k ∈ {1, 2, . . . , n1}, could be positive. Therefore,
āi i < 0 does not simply imply that all interaction within species i are competitive.

7.2 The Sign of s(Ai i )

Suppose that N = 1 and A is nonsingular. Thenn1 = n. Choose c1 = 1. ThenLemma
2 shows that x∗

1 = x∗
2 = · · · = x∗

n1 = − 1
n1ā11

. Because of this property, if ā11 < 0 then
x∗ > 0 and the sign of s(diag(x∗)A) is equivalent to that of s(A). Therefore, under
the assumption ā11 < 0, system (5) with N = 1 has a branch of positive equilibria
bifurcating from the origin as increasing R1

0 through R1
0 = 1 and the bifurcation

is stable (resp. unstable) if s(A) < 0 (resp. s(A) > 0). An application of this result
to multi-species cases shows that, under the assumption āi i < 0, i = 1, 2, . . . , N ,
s(Aii ) < 0 implies that each single-species subsystem has a stable bifurcation of
positive equilibria when all species are isolated from each other.

If all interactions within species i are competitive, i.e., b[i, j][i,k] < 0 for every
j, k ∈ {1, 2, . . . , ni }, then s(Aii ) < 0 implies that, within species i , competition is
more severewithin than between age-classes. In fact, since thematrix Aii is circulant,
its eigenvalues are

λk =
ni−1∑

j=0

κ j e
2π

√−1
ni

jk = κ0 +
ni−1∑

j=1

κ j e
2π

√−1
ni

jk
, k = 0, 1, . . . , ni − 1,



18 R. Kon

where
√−1 denotes the imaginary unit and (κ0, κ1, . . . , κni−1) is the first row of the

matrix Aii , i.e.,

κ0 := ν

ni

(

b[i,1][i,1] + b[i,2][i,2]s[i,1] + · · · + b[i,ni ][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

κ1 := ν

ni

(

b[i,ni ][i,1] + b[i,1][i,2]s[i,1] + · · · + b[i,ni−1][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

...

κni−1 := ν

ni

(

b[i,2][i,1] + b[i,3][i,2]s[i,1] + · · · + b[i,1][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

.

By definition, s(Aii ) < 0 if and only ifRe λk < 0 for all k = 0, 1, . . . , ni − 1. These
inequalities clearly hold if competition between age-classes is weak, i.e., all b[i, j][i,k],
j �= k, are sufficiently small since κ0 < 0 holds when all interaction within species
i are competitive and κ0 is independent of b[i, j][i,k], j �= k. The same conclusion is
obtained in [5] and its Table1 gives exact stability criteria for ni = 2, 3, . . . , 6.

7.3 The Sign of s(Diag(Tx∗) Ā)

We shall show that if s(diag(T x∗) Ā) < 0 (resp. s(diag(T x∗) Ā) > 0), then the N -
species community in system (5) is evaluated as stable (resp. unstable) when each
species is assumed to be fixed at a certain age-distribution. Define the vector di , i =
1, 2, . . . , N , by di = (1, s[i,1], . . . , s[i,1]s[i,2] . . . s[i,ni−1])�. Then di is an eigenvector
of the matrix

Li =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0 1
s[i,1]s[i,2]...s[i,ni−1]

s[i,1] 0 · · · 0 0
...

...
...

...

0 0 · · · s[i,ni−1] 0

⎞

⎟
⎟
⎟
⎠

associated with its dominant eigenvalue 1. This matrix is a Leslie matrix for a semel-
parous population whose basic reproduction number is 1. Let H be the plane spanned
by di , i = 1, 2, . . . , N . Then since each di is an eigenvector of Li , the plane H is
invariant under the linearized system of (5) at the origin when ε = 0. Suppose that uk
is on the plane H . Then each species i has the age-distribution parallel to di at time
k. Define wk = (w1,k, w2,k, . . . , wN ,k)

� by wk := T D−1uk . The i-th component of
wk denotes a weighted total population size of species i at time k. Since uk is on the
plane H , we have

u[i,1],k = u[i,2],k
s[i,1]

= · · · = u[i,ni ],k
s[i,1]s[i,2] . . . s[i,ni−1]

= wi,k

ni
, i = 1, 2, . . . , N .
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By Eq.(5), the weighted total population size of species i at time k + 1 is given by

wi,k+1 = hi (ε,wk)wi,k,

where

hi (ε,wk) := 1

ni

(

σ[i,1](uk) + σ[i,2](uk) + · · · + e
ci ni

ν
εσ[i,ni ](uk)

)

.

Since uk+1 might not be on the plane H , wk+2 is not given by iterating this Kol-
mogorov difference equation. However, it is used to estimate the average effect of
species interactions when each species i has the age-distribution parallel to di . In
fact, we obtain

∂hi
∂ε

(
0, 0

) = ci
ν

,
∂hi
∂w j

(
0, 0

) = āi j
ν

,

which shows that the species interactions can be modeled by the N -dimensional
Lotka-Volterra equation

ν
dyi
dt

= yi

(

ci +
N∑

j=1

āi j y j

)

, i = 1, 2, . . . , N

as long as ε > 0 is very small and each species i has the age-distribution parallel
to di . In this unstructured model, the N species coexist (resp. cannot coexist) stably
at a positive equilibrium if s(diag(T x∗) Ā) < 0 (resp. s(diag(T x∗) Ā) > 0). There-
fore, roughly speaking, Theorem 4 shows that the unstructured model derived above
under the assumption that each species i has the fixed age-distribution parallel to di
correctly evaluates the stability of bifurcations in system (5) if all species have stable
dynamics when they are isolated from each other (i.e., s(Aii ) < 0, i = 1, 2, . . . , N )
and {n1, n2, . . . , nN } is pairwise coprime.

8 Examples of Instability

Theorem 4 shows that, under the condition that {n1, n2, . . . , nN } is pairwise coprime,
āi i < 0, i = 1, 2 . . . , N , and x∗ = −A−1r > 0, the stability problem of the positive
equilibrium of (5) bifurcating from the origin is reduced to that of N + 1 matrices,
Aii , i = 1, 2, . . . , N , and diag(T x∗) Ā. Since their sizes are usually much smaller
than that of diag(x∗)A, this reduction is useful. However, if {n1, n2, . . . , nN } is not
pairwise coprime, this simple reduction does not work. This section focuses on this
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point. We shall show that system (5) can posses an unstable branch of positive
equilibria even if all of Aii , i = 1, 2, . . . , N , and diag(T x∗) Ā are stable.

To this end, we consider the case where N = 2 and n1 = n2 = 2. Then n1 and
n2 are not coprime and their least common multiple is ν = 2. The vector r and the
matrix A given by (7) can be rewritten as

r =

⎛

⎜
⎜
⎝

c1
c1
c2
c2

⎞

⎟
⎟
⎠ , A =

⎛

⎜
⎜
⎝

−k1 −k2 −α1 −α2

−k2 −k1 −α2 −α1

−α3 −α4 −k3 −k4
−α4 −α3 −k4 −k3

⎞

⎟
⎟
⎠ ,

where every constant is assumed to be positive. Then ā11 = − k1+k2
2 < 0 and ā22 =

− k3+k4
2 < 0 are satisfied.
Suppose that A is nonsingular. Then the equation r + Ax = 0 has a unique solu-

tion x∗. Note that we can control the sign of x∗ by choosing suitable signs of c1 and
c2. By Lemma 2, x∗ is written as (w1

2 , w1
2 , w2

2 , w2
2 )�, where (w1, w2)

� = T x∗. We
shall show that diag(x∗)A can be destabilized under the following assumption:

(A): A11 =
(−k1 −k2

−k2 −k1

)

, A22 =
(−k3 −k4

−k4 −k3

)

,

and diag(T x∗) Ā =
(− k1+k2

2 w1 −α1+α2
2 w1

−α3+α4
2 w2 − k3+k4

2 w2

)

are stable.

Since tr A11 < 0 and tr A22 < 0 are satisfied, the stability conditions for A11 and A22

are reduced to
k1 > k2 and k3 > k4. (8)

By the definition of A, the inequality implies that in each species competition
between age-classes are more severe than within age-classes. Furthermore, since
tr diag(T x∗) Ā < 0 is satisfied, the condition for s(diag(T x∗) Ā) < 0 is reduced to

(k1 + k2)(k3 + k4) > (α1 + α2)(α3 + α4), (9)

which shows that competition between species is more severe than within species
(see Sect. 7.3). In order to destabilize diag(x∗)A, let us examine the characteristic
polynomial det(λI − diag(x∗)A), which is reduced to

det(λI − diag(T x∗) Ā) det(λI − Ã),

where

Ã := 1

2
diag

(

T x∗
)(−k1 + k2 −α1 + α2

−α3 + α4 −k3 + k4

)

.

Since diag(T x∗) Ā is assumed to be stable, diag(x∗)A can be destabilized if Ã can
be destabilized. By Eq. (8), tr Ã < 0 holds, but the sign of det Ã is not determined.
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Therefore, if the set of parameters satisfying (8), (9) and

(k1 − k2)(k3 − k4) < (α1 − α2)(α3 − α4) (10)

is nonempty, then system (5) can possess an unstable branch of a positive equilibria
even if A11, A22 and diag(T x∗) Ā are stable.

Figures1 and 2 give such examples. In the examples, it is assumed the nonlinearity
is of Beverton-Holt type

σi (u) = 1

1 + (Bu)i
, i = 1, 2, . . . , n.

To construct an example of system (5) satisfying (8), (9), and (10), we need to
determine s1, s2, c1, c2, and B. We suppose that s1 = s2 = 0.9 and c1 = c2 = 1 (i.e.,
R1

0 = R2
0 = eε). Furthermore, we suppose that

Fig. 1 Bifurcation diagram for system (5) with N = 2 and n1 = n2 = 2. In both panels, the hor-
izontal axes denote eε (= R1

0 = R2
0 ) and the vertical axes denote u1 + u2 and u3 + u4 in the left

and right panels, respectively. The parameters are s1 = s3 = 0.9, c1 = c2 = 1, k1 = 4K , k2 = 3K ,
k3 = 3K , k4 = 2K , α1 = 3K , α2 = K , α3 = 3K , α4 = K , where K = 10−3

Fig. 2 Bifurcation diagram for system (5) with N = 2 and n1 = n2 = 2. In both panels, the hor-
izontal axes denote eε (= R1

0 = R2
0 ) and the vertical axes denote u1 + u2 and u3 + u4 in the left

and right panels, respectively. The parameters are s1 = s3 = 0.9, c1 = c2 = 1, k1 = 4K , k2 = 3K ,
k3 = 3K , k4 = 2K , α1 = K , α2 = 3K , α3 = K , α4 = 3K , where K = 10−3
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Fig. 3 Dynamics of system (5) with N = 2 and n1 = n2 = 2. The parameters are s1 = s3 = 0.9,
c1 = c2 = 1, eε = 10 (= R1

0 = R2
0 ), k1 = 4K , k2 = 3K , k3 = 3K , k4 = 2K , α1 = 3K , α2 = K ,

α3 = 3K ,α4 = K , where K = 10−3. The horizontal axes denote time k. The black andwhite circles
denote u1,k and u2,k , respectively. The black and white triangles denote u3,k and u4,k , respectively.
The left panel shows the transient dynamics and the right panel shows the ultimate dynamics

Fig. 4 Dynamics of system (5) with N = 2 and n1 = n2 = 2. The parameters are s1 = s3 = 0.9,
c1 = c2 = 1, eε = 10 (= R1

0 = R2
0 ), k1 = 4K , k2 = 3K , k3 = 3K , k4 = 2K , α1 = K , α2 = 3K ,

α3 = K ,α4 = 3K , where K = 10−3. The horizontal axes denote time k. The black andwhite circles
denote u1,k and u2,k , respectively. The black and white triangles denote u3,k and u4,k , respectively.
The left panel shows the transient dynamics and the right panel shows the ultimate dynamics

Fig. 5 Dynamics of system (5) with N = 2 and n1 = n2 = 2 when two species are isolated, i.e.,
α1 = α2 = α3 = α4 = 0. All other parameters are the same as in Figs. 3 and 4. The horizontal axes
denote time k. The black and white circles denote u1,k and u2,k , respectively. The black and white
triangles denote u3,k and u4,k , respectively. The left panels show the transient dynamics and the
right panels shows the ultimate dynamics
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B = 1

2

⎛

⎜
⎜
⎜
⎝

−k1 − k2
s1

−α1 −α2
s3−k2 − k1

s1
−α2 −α1

s3−α3 −α4
s1

−k3 − k4
s3−α4 −α3

s1
−k4 − k3

s3

⎞

⎟
⎟
⎟
⎠

.

Then Eq. (7) yields the matrix A shown above. The values of α1, . . . , α4, k1, . . . , k4
are given in the figure legends of Figs. 1 and 2. They show bifurcation diagrams
for system (5). In each bifurcation diagram, system (5) does not have a stable pos-
itive equilibrium bifurcating from the origin and is settled in a 2-cycle. In Fig. 1,
α1 > α2 and α3 > α4 are satisfied. This condition implies that two species compete
severely between the same level of age-classes. As shown in Fig. 3, this case leads
to coexistence of two species with temporal segregation between the same level of
age-classes. In Fig. 2, α1 < α2 and α3 < α4 are satisfied. This condition implies that
two species compete severely between the different level of age-classes. As shown
in Fig. 4, this case leads to coexistence of two species with temporal segregation
between the different level of age-classes. Figure 5 shows the dynamics of species
1 and 2, respectively, when they are isolated from each other. All parameters are the
same as in Figs. 3 and 4 except α1, . . . , α4. Thus this numerical simulation shows
that age-specific species competition is an essential factor causing the population
cycles observed in Figs. 3 and 4.

9 Concluding Remarks

This paper studied the dynamics of a multi-species semelparous population model,
which is described by coupling multiple nonlinear semelparous Leslie matrix mod-
els. We focused on bifurcations of the extinction equilibrium and proposed a simple
method of evaluating the stability of a branch of positive equilibria bifurcating from
the extinction equilibrium. The method reduces the bifurcation problem into a sta-
bility problem of Lotka-Volterra equations. Using this reduction method, we found
a population cycle in a competitive system composed of two biennial species. The
mechanism of producing this population cycle is new in the sense that it is produced
without either severe between-age-class competition or predator-prey like species
interaction. It is a future problem to classify all possible dynamics of such a com-
petitive system.

Our study provides a mathematical basis to some preceding studies. In [13, 14],
the Lotka-Volterra equation with A and r given by (7) is derived from system (1).
Our study was motivated by the study by Diekmann and van Gils [7], who derived a
Lotka-Volterra equation with cyclic symmetry from a nonlinear semelparous Leslie
matrix model. The three preceding studies do not show how the derived Lotka-
Volterra equation reflects the dynamical behavior of the original single- or multi-
species semelparous population model. However our study revealed that the derived
Lotka-Volterra equation can be used to examine the stability of a branch of positive
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Fig. 6 The

(log(R1
0 )

ν
n1 , log(R2

0 )
ν
n2 )-

parameter plane with an
open parameter region R
with a cusp at the origin

equilibria of the original model bifurcating the extinction equilibrium. Furthermore,
our result rediscovered the result by Cushing and Henson [5], who obtained a con-
dition for stable bifurcation of positive equilibria in nonlinear semelparous Leslie
matrix models (see Sect. 7.2).

In our bifurcation study,we focused on a bifurcation that occurs at the critical point
R1

0 = R2
0 = · · · = RN

0 = 1. In order to avoid treating a multi-parameter bifurcation
problem, we perturb the parametersR1

0 ,R
2
0 , . . . ,R

N
0 with maintaining the relation

(4). This approach is practically sufficient to examine the dynamics of system (1)with
the parameter around the critical point. However there could exist exceptional cases
that our approach is unable to treat. Figure6 shows the (log(R1

0 )
ν
n1 , log(R2

0 )
ν
n2 )-

parameter plane with an open parameter region R with a cusp at the origin. It is clear
that any neighborhood of the origin intersects with R. However, for any vector c,
there exists a constant ε0 > 0 such that εc /∈ R for all ε ∈ (0, ε0). This implies that
our approach cannot detect the dynamics in such a region. Therefore, in order to
reveal the dynamics of system (1) in a neighborhood of the origin of the parameter
plane, we need to consider a multi-parameter bifurcation problem. Whether or not
the region that our approach cannot detect exists remains an open question.
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