
J. Math. Biol. (2007) 55:781–802
DOI 10.1007/s00285-007-0111-9 Mathematical Biology

Single-class orbits in nonlinear Leslie matrix models
for semelparous populations

Ryusuke Kon · Yoh Iwasa

Received: 22 January 2007 / Revised: 26 May 2007 / Published online: 17 July 2007
© Springer-Verlag 2007

Abstract The dynamics of a general nonlinear Leslie matrix model for a semel-
parous population is investigated. We are especially concerned with the attractivity
of the single-class state, in which all but one cohort (or year-class) are missing. Our
result shows that the single-class state is attractive if inter-class competition is severe.
Conversely, if intra-class competition is severe, the single-class state is repelling.
Numerical investigations show that all classes do not necessarily coexist even if the
single-class state is repelling.
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1 Introduction

Synchronous behavior has been recognized as one of the important characteristic
behaviors of age-structured population models [1,3,5–8,10,11,20,26,29]. Although
many studies have revealed several properties of such synchronous behavior, there
are still many open problems to be solved mathematically. In this paper, we focus
on discrete-time age-structured population models, namely Leslie matrix models, and
provide some mathematical results concerning synchronous behavior.
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Temporal synchronization of the population dynamics can be found in nature (see
[1,13]). A typical example is the curious population dynamics of the periodical cicadas
inhabiting the Eastern United States. Their life cycles have the fixed length of 17 years
(or, in the south, 13 years). Their nymphs spend underground for precisely 17 years
before emerging from the ground (see [23,24,27] for the details). The interesting
feature of these cicadas is that all individuals in the same population are of the same
age and all except one cohort (or year-class) are missing. Thus the adult individuals
appear synchronously every 17th year. In addition to the periodical cicadas, several
insects such as the May beetle and the oak egger moth are known to be the insects
exhibiting the synchronous population dynamics (see [1,13]).

To reveal the ecological mechanism leading to this synchronization is one of the
interesting problems in population ecology. Bulmer [1] has tackled this problem by
studying nonlinear Leslie matrix models and reached the conclusion that the synchro-
nous behavior occurs if competition is more severe between than within age-classes.
This conclusion is based partly on numerical investigations, several studies have been
carried out to obtain a further mathematical basis of this conclusion . Davydova et al.
[10] concentrated on the Leslie matrix model for a biennial semelparous population, in
which individuals are categorized into two age-classes (biennial) and reproduce only
once in their life (semelparous). Their model corresponds to the two-dimensional case
of Bulmer’s model [1]. Davydova et al. [10] showed that the synchronous behavior
can occur in the sense that the model can possess a stable cycle corresponding to the
synchronous behavior (see also [6,21,22] for the biennial semelparous case). Mjøl-
hus et al. [26] focused on the special case of Leslie matrix models where the density
dependence is restricted to the reproduction process (but their model is general in the
sense that the number of age-classes is arbitrary fixed). Their result shows that if the
reproduction ability is monotonically depressed with increasing the total population
density, then the state in which all but one cohort are missing is always attractive. That
is, the synchronous behavior involving a single cohort always appears as a stable phe-
nomenon. Our study generalizes these results and provide an additional mathematical
basis of Bulmer’s conclusion.

In addition to the simple synchronous behavior corresponding to the periodical
cicada case, a different type of synchronous behavior is also observed in nonlinear
Leslie matrix models. For example, as numerically demonstrated by Bulmer [1], nonli-
near Leslie matrix models can exhibit the synchronous behavior in which the dominant
single cohorts replace each other successively and the interval of the replacement leng-
thens monotonically. This dynamics is due to the existence of the heteroclinic orbits
connecting the single-cohort behavior with different phases [5,6,11]. Furthermore,
Leslie matrix models can exhibit the synchronous behavior involving multiple cohorts
[26]. Although we do not address these issues, our results are helpful to understand
these synchronous dynamics.

This paper is organized as follows. In Sect. 2, we introduce the Leslie matrix
model studied in this paper. In Sect. 3, the rough dynamical properties of the Leslie
matrix model are studied. This study provides the condition for the boundedness
of the population densities, the persistence of the total population and the global
stability of the extinction state. In Sect. 4, we deal with the problem of attractivity
of the state in which all but one cohort are missing. Our results are applicable to
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the case where the density dependence is restricted to a survival process of a single
age-class. This generalizes the result by Mjølhus et al. [26]. Our results are also
applicable to a general case including the model studied by Bulmer [1]. These results
provide a further mathematical basis of Bulmer’s conclusion. In Sect. 5, we show
some examples illustrating the results obtained in Sect. 4. The final section includes
concluding remarks. Some notation and theorems on dynamical systems and matrix
population models are given in Appendices.

2 Leslie matrix models

The age-structured population model studied in this paper is the following nonlinear
Leslie matrix model for a semelparous population:

x(t + 1) = L[x(t)]x(t), (2.1)

where x = (x0, x1, . . . , xn−1)
� and

L[x] =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 sn−1σn−1(x)
s0σ0(x) 0 · · · 0 0

0 s1σ1(x) · · · 0 0
...

...
. . .

...
...

0 0 · · · sn−2σn−2(x) 0

⎞
⎟⎟⎟⎟⎟⎠
.

The component xi (t) of the vector x(t) denotes the number of individuals of age i at
time t . The matrix L[x] is a special case of the Leslie matrix (see [2,4] for a general case
of the Leslie matrix). si and σi (x) are positive constants and functions, respectively.
For i �= n − 1, siσi (x) denotes the survival probability of the age i individuals.
sn−1σn−1(x) includes both survival and reproduction factors. Therefore, sn−1σn−1(x)
may exceed one, while siσi (x) ≤ 1, i �= n − 1, must hold for all nonnegative x.
The pattern of the first row of L[x] implies that only the last age-class can reproduce,
and thus (2.1) is a model for a semelparous population. In order that each nonzero
entry siσi (x) is reduced to the constant si at the population-free fixed point x = 0, we
assume that σi (0) = 1.

In this paper, we are concerned with the synchronous dynamics of (2.1) in the
nonnegative cone R

n+ = {x ∈ R
n : xi ≥ 0 for all i}. An orbit x(t) is said to be

synchronous if x(t) ∈ bdR
n+ for all t ≥ 0, where bdR

n+ denotes the boundary of R
n+.

Along a synchronous orbit there are always missing age-classes. Since every point on
bdR

n+ is mapped to a point on bdR
n+, bdR

n+ is forward invariant. This implies that
every orbit starting at a boundary point is a synchronous orbit. Among synchronous
orbits, we are especially concerned with a synchronous orbit along which all but one
cohort (or year-class) are missing, i.e., an orbit remaining in the coordinate axes. Such
an orbit is called a single-class orbit. We see that every orbit starting at a point on the
coordinate axes is a single-class orbit since the union of the coordinate axes is forward
invariant. By the sign pattern of L[x], it is clear that a single-class orbit (except the

123



784 R. Kon, Y. Iwasa

trivial case x(0) = 0) has the following cyclic sign pattern:

(+, 0, 0, . . . , 0)→(0,+, 0, . . . , 0) → · · · → (0, 0, 0, . . . ,+)→(+, 0, 0, . . . , 0),

in which the plus entry shifts to the right. The union of the coordinate axes is called
the single-class state since it includes all single-class orbits. Our main concern is to
obtain the condition under which the single-class state is attractive.

3 Preliminary results

In this section, we precisely introduce assumptions for system (2.1), and obtain pre-
liminary results concerning the global dynamics of system (2.1)

We assume that our system satisfies the following conditions.

(H1) s0, . . . , sn−2 ∈(0, 1] and sn−1 ∈(0,∞);σi : R
n+ →(0,∞), i = 0, 1, . . . , n−1,

are continuous functions satisfying σi (0) = 1; siσi (x) ≤ 1, i = 0, 1, . . . , n−2,
for all x ∈ R

n+ (Note that sn−1σn−1(x) ≤ 1 may not hold).
(H2) System (2.1) is dissipative (The definition is given in Appendix A).

Notice that the density dependent effects are not always deleterious. In fact, σi (x)
could increase with increasing some x j and exceed one under the assumption (H1).
By (H1), σi (x), i = 1, 2, . . . , n − 2, are bounded, but σn−1(x) may not be bounded.
It is usually assumed that σi (x) ≤ 1 for all x ∈ R

n+, but our relaxed assumption plays
an important role when we consider a practical case addressed in the final section.

Under the assumption (H1), the nonnegative cone R
n+ is forward invariant and the

map f : R
n+ → R

n+ defined by f (x) = L[x]x is continuous. The condition (H2)
ensures that there exists a positive constant D > 0 such that every solution x(t) of
(2.1) satisfies

lim sup
t→∞

|x(t)| ≤ D,

where |x| = x0 + x1 + · · · + xn−1. Hence, the population densities are ultimately
bounded. The following proposition provides easily verifiable conditions for (H2).

Proposition 3.1 Suppose that (H1) holds and

(H2)′ the following (i) or (ii) holds: (i) There exist constants λ ∈ (0, 1) and K > 0
such that sn−1σn−1(x) ≤ λ for all x ∈ R

n+ with |x| ≥ K ; (ii) One of σi (x)xi ,
i = 0, 1, . . . , n − 1, is bounded above and σn−1(x) is also bounded above.

Then system (2.1) is dissipative.

Proof Suppose that (H1) and (H2)′-(i) hold. By using Theorem B.1 of Appendix B,
we shall prove this case. Let c = λ1/n . Then c ∈ (0, 1). Let y0 = x0, y1 =
cx1, . . . , yn−1 = cn−1xn−1. By using these new variables, we can rewrite (2.1) as
follows:

y(t + 1) = L̃[y(t)]y(t), (3.1)
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where y = (y0, y1, . . . , yn−1)
� and

L̃[y] =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 sn−1σ̃n−1(y)/cn−1

cs0σ̃0(y) 0 · · · 0 0
0 cs1σ̃1(y) · · · 0 0
...

...
. . .

...
...

0 0 · · · csn−2σ̃n−2(y) 0

⎞
⎟⎟⎟⎟⎟⎠
.

Note that σ̃i (x0, cx1, . . . , cn−1xn−1) = σi (x0, x1, . . . , xn−1), i = 0, 1, . . . , n−1. It is
clear that if (3.1) is dissipative, then (2.1) is also dissipative. By (H1), csi σ̃i (y) ≤ c <
1, i = 0, 1, . . . , n − 2, for all y ∈ R

n+ and, by (H2)′-(i), sn−1σ̃n−1(y)/cn−1 ≤ c < 1
for all y ∈ R

n+ with y0 + cy1 + · · · + cn−1 yn−1 ≥ K . It follows from Theorem B.1
that (2.1) is dissipative.

Suppose that (H1) and (H2)′-(ii) hold. Let σd(x)xd be bounded above. Then there
exists a positive constant K > 0 such that σd(x)xd ≤ K and σ0(x) ≤ K , σ1(x) ≤
K , . . . , σn−1(x) ≤ K for all x ∈ R

n+. Consequently, a solution x(t) of (2.1) satisfies

xd+1(t + 1) = sdσd(x(t))xd(t) ≤ sd K

for all t ≥ 0. By induction,

xd+ j+1(t + j + 1) = sd+ jσd+ j (x(t + j))xd+ j (t + j)

≤ sd+ j K xd+ j (t + j)

≤
j∏

i=0

(sd+i K )

holds for all t ≥ 0 and 0 ≤ j ≤ n − 1. Here the subscripts of si , σi and xi are counted
modulo n. This completes the proof. 	


We define permanence of system (2.1) as follows.

Definition 3.2 (permanence) System (2.1) is said to be permanent if there exist a
positive constant δ > 0 such that

δ ≤ lim inf
t→∞ |x(t)| ≤ lim sup

t→∞
|x(t)| ≤ 1

δ

for all solutions x(t) satisfying x(0) ∈ R
n+ and |x(0)| > 0.

It is ensured that if (2.1) is permanent, then the total population density |x(t)| =
x0(t)+ x1(t)+· · ·+ xn−1(t) does not go to zero, i.e., the population survives in total.
The following proposition provides a sufficient condition for permanence of (2.1).

Proposition 3.3 Suppose that (H1) and (H2) hold. System (2.1) is permanent if
R0 := s0s1 · · · sn−1 > 1.
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Proof By using Theorem B.2 of Appendix B, we shall show that (2.1) is permanent. It
is clear that the conditions (A1)–(A4) in Appendix B hold under the assumptions
(H1) and (H2). Furthermore, L[0] is irreducible. Since the characteristic polyno-
mial det(L[0] − λI ) = 0 is reduced to λn = R0, the dominant eigenvalue of the
non-negative matrix L[0] is R1/n

0 > 1. This shows that (2.1) is permanent. 	

The number R0 is called the basic reproduction number of L[x]. This number

denotes the expected number of offspring per individual per lifetime when the density
dependent effects are ignored. It is clear that (2.1) is not permanent if R0 < 1. In fact,
the population-free fixed point x = 0 is asymptotically stable if R0 < 1. However, the
global asymptotical stability of x = 0 is not clear. The following proposition provides
a sufficient condition for the global asymptotical stability of x = 0. This proposition
also revels the dynamics of the critical case R0 = 1.

Proposition 3.4 Suppose that (H1) holds and

(H3) σi (x) ≤ 1, i = 0, 1, . . . , n − 1, for all x ∈ R
n+ and there exists an index

d ∈ {0, 1, . . . , n − 1} such that σd(x) �= 1 for all x �= 0.

If R0 ≤ 1, then the population-free fixed point x = 0 is globally asymptotically
stable, i.e., x = 0 is stable and limt→∞ x(t) = 0 for all x(0) ∈ R

n+.

Proof By (H3) and R0 ≤ 1, every solution x(t) of (2.1) satisfies

xi (t + n) ≤ R0xi (t) ≤ xi (t), i = 0, 1, . . . , n − 1,

for all t ≥ 0. Therefore, for every K > 0 the set UK = {x ∈ R
n+ : |x| < K } is forward

invariant under f n , where f (x) = L[x]x. Consequently, x = 0 is a stable fixed point
of f n . Let c = max{1, sn−1} ≥ 1. Then f i (UK ) ⊂ Ucn K for all i = 1, 2, n − 1, and
f n(UK ) ⊂ UK . Hence, x = 0 is also a stable fixed point of f .

Finally, consider the global attractivity of x = 0. Let x(0) ∈ R
n+, and choose a

constant K > 0 such that x(0) ∈ UK . Note that UK is forward invariant under f n .
Suppose that there exists an ε > 0 such that x(t) ∈ UK \Uε for all t ≥ 0. Then there
exists a λ ∈ (0, 1) such that

σd(x) ≤ λ

for all x ∈ UK \Uε , and thus x(t) satisfies

xi (t + n) ≤ R0λxi (t), i = 0, 1, . . . , n − 1,

for all t ≥ 0. It follows from R0λ < 1 that x(nk) → 0 as k → ∞. This is a
contradiction, and thus for any ε > 0 there exists an integer T ≥ 0 such that x(T ) ∈ Uε .
Since Uε is forward invariant under f n , we obtain x(nk) → 0 as k → ∞. That is,
x = 0 is a globally attractive fixed point of f n . By the same argument as above, we
can show that x = 0 is also a globally attractive fixed point of f . 	
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4 Attractivity of the single-class state

In this section, we consider the attractivity of the single-class state. First, we intro-
duce some notation. Let N = {0, 1, . . . , n − 1}. Define Fi = {x ∈ R

n+ : x j = 0
for all j �= i}, which denotes the xi -axis. The union of Fi is denoted by F = ⋃

i∈N Fi ,
which corresponds to the single-class state. Let O = {0} be the set consisting only of
the origin. For δ ∈ (0, 1), let X (δ) = {x ∈ R

n+ : δ ≤ |x| ≤ 1/δ}, Fi (δ) = Fi ∩ X (δ)
and F(δ) = F ∩ X (δ). Some notation on dynamical systems (e.g., γ+

f and ω f ) are
defined in Appendix A.

Define the map f : R
n+ → R

n+ by the right-hand side of (2.1), i.e., f (x) = L[x]x.
The n-fold composite of the map f is denoted by G = f n . The map G describes
how the class distribution changes from one generation to the next. Define gi : R

n+ →
(0,∞) by

gi (x) = R0σi+n−1( f n−1(x)) · · · σi+1( f (x))σi (x),

where the subscripts of σi are counted modulo n. The function gi describes how the
population of class i is multiplied during one generation. The functions G and gi

satisfy

G(x) =

⎛
⎜⎜⎜⎝

g0(x)x0
g1(x)x1

...

gn−1(x)xn−1

⎞
⎟⎟⎟⎠.

By definition, if system (2.1) is permanent, then there exists a positive constant δ > 0
such that every solution x(t) of (2.1) with x(0) ∈ R

n+\O eventually enters the interior
of X (δ), {x ∈ R

n+ : δ < |x| < 1/δ}, which is an open subset of R
n+ with the

compact closure X (δ). Furthermore, Theorem A.3 of Appendix A ensures thatX (δ) :=
γ+

f (X (δ)) is a compact absorbing set for R
n+\O (Note that X (δ) ⊂ X (δ)). Therefore,

if system (2.1) is permanent, the ultimate behavior of (2.1) is determined by the
dynamics in X (δ). In this section, we apply theorems on average Liapunov functions
(Theorems A.1 and A.2) to Gt |X (δ) with a certain integer t ≥ 1 (Gt |X (δ) denotes Gt

restricted to X (δ)). By this application, we consider the attractivity of the single-class
state F . It is clear that both F(δ) := F ∩ X (δ) and X (δ)\F(δ) are forward invariant
under Gt . The continuous function P : X (δ) → R+ defined by

P(x) =
∏
i∈N

∑
j∈N\{i}

x j

is a candidate for an average Liapunov function. This function satisfies P(x) = 0
if and only if x ∈ F(δ). Define the continuous functions ψ−

t : X (δ) → R+ and
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ψ+
t : X (δ) → R+ by

ψ−
t (x)=

∏
i∈N

max
j∈N\{i}

{
t−1∏
k=0

g j (G
k(x))

}
and ψ+

t (x)=
∏
i∈N

min
j∈N\{i}

{
t−1∏
k=0

g j (G
k(x))

}
.

We see that these functions satisfy P(Gt (x)) ≤ ψ−
t (x)P(x) and P(Gt (x)) ≥ ψ+

t (x)
P(x) for all x ∈ X (δ). By using P as an average Liapunov function, we obtain the
following result.

Theorem 4.1 Suppose that (H1) holds and (2.1) is permanent. (i) If for every δ ∈
(0, 1) there exists an integer t ≥ 1 such that ψ−

t (x) < 1 for all x ∈ F(δ), then for all
small δ ∈ (0, 1) there exists a neighborhood U (δ) of F(δ) in R

n+ such thatω f (x) ⊂ F
for all x ∈ U (δ). (ii) If for every ε ∈ (0, 1) there exists an integer t ≥ 1 such that
ψ+

t (x) > 1 for all x ∈ F(ε), then F is a repeller.

Proof Let us consider case (i). Since (2.1) is permanent, we can construct a compact
set X (δ) for R

n+\O (see Theorem A.3). Choose δ′ ∈ (0, δ) such that X (δ) ⊂ X (δ′).
Then, by assumption, there exists an integer t ≥ 1 such that ψ−

t (x) < 1 for all
x ∈ F(δ′) ⊃ F(δ). Let us apply Theorem A.2 to our problem (X (δ), F(δ) and Gt |X (δ)
correspond to X , S and f in Theorem A.2, respectively). By Theorem A.2, it follows
that there exists a neighborhood U(δ) of F(δ) in X (δ) such that ωGt (x) ⊂ F(δ) for
all x ∈ U(δ). Since f is continuous and F(δ) is forward invariant under f , every point
close to F(δ) is mapped to a point close to F(δ) by f . Therefore, ω f (x) ⊂ F(δ) for
all x ∈ U(δ). Since this result holds for all small δ ∈ (0, 1), the conclusion of case (i)
follows.

Let us consider case (ii). Similarly to the above, we apply Theorem A.1 to Gt |X (δ).
By this application, the second conclusion immediately follows sinceγ+

f (x)∩X (δ) �=∅
for every x ∈ R

n+\O . 	

The following lemma is useful when we obtain easily verifiable conditions for the

attractivity of F . This lemma shows that the average logarithmic growth of each class
during one generation converges to zero when the population density fluctuates along
a single-class orbit.

Lemma 4.2 Suppose that (H1) holds and (2.1) is permanent. Then for any ε > 0 and
δ ∈ (0, 1) there exists an integer T ≥ 1 such that

∣∣∣∣∣
1

t

t−1∑
k=0

ln gi (G
k(x))

∣∣∣∣∣ ≤ ε (4.1)

holds for all x ∈ Fi (δ) and t ≥ T .

Proof Let δ be an arbitrary number in the interval (0, 1). Since (2.1) is permanent,
we can choose a δ′ ∈ (0, δ) such that every solution x(t) with x(0) ∈ Fi (δ) satisfies
δ′ ≤ xi (tn) ≤ 1/δ′ for all t ≥ 0 (see Theorem A.3).
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Let x(t) be a solution of (2.1) with x(0) ∈ Fi (δ). Then, by the definition of gi ,

xi (tn) = gi (x((t − 1)n))xi ((t − 1)n)

= gi (x((t − 1)n))gi (x((t − 2)n)) · · · gi (x(0))xi (0)

holds for all t ≥ 1, and we obtain

∣∣∣∣∣
1

t

t−1∑
k=0

ln gi (G
k(x(0)))

∣∣∣∣∣ =
∣∣∣∣
ln xi (tn)− ln xi (0)

t

∣∣∣∣ ≤ |2 ln δ′|
t

.

Hence, (4.1) holds for all x ∈ Fi (δ) and t ≥ |2 ln δ′|/ε. 	


In the application of Theorem 4.1, we have to find an integer t ≥ 1 such that either
ψ−

t (x) < 1 for all x ∈ F(δ) or ψ+
t (x) > 1 for all x ∈ F(δ). These inequalities can be

checked by the signs of

�−
t (x) = 1

t
lnψ−

t (x) and �+
t (x) = 1

t
lnψ+

t (x).

It is clear that ψ−
t (x) < 1 (resp. ψ+

t (x) > 1) if �−
t (x) is negative (resp. �+

t (x) is
positive). By definition of ψ−

t and ψ+
t , the functions �−

t and �+
t are expressed as

follow:

�−
t (x) =

∑
i∈N

max
j∈N\{i}

{
1

t

t−1∑
k=0

ln g j (G
k(x))

}
,

�+
t (x) =

∑
i∈N

min
j∈N\{i}

{
1

t

t−1∑
k=0

ln g j (G
k(x))

}
.

4.1 Density dependence restricted to a single age-class

In this subsection, we focus on the case where the density dependence is restricted to
a single age-class. More precisely, we consider system (2.1) satisfying

(A1) σd(x) = σ(α0x0 + α1x1 + · · · + αn−1xn−1), αi > 0, and σi (x) = 1 for all
i �= d.

For this special case, we can obtain an easily verifiable condition for the attractivity
of F as follows.
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Theorem 4.3 Suppose that (H1) and (A1) hold and (2.1) is permanent. Assume that
σ is strictly decreasing. (i) If the inequalities

sd−1 < αd−1/αd

sd−1sd−2 < αd−2/αd

...

sd−1sd−2 · · · sd−n+1 < αd−n+1/αd (4.2)

hold, then for all small δ > 0 there exists a neighborhood U (δ) of F(δ) in R
n+ such

that ω f (x) ⊂ F for all x ∈ U (δ). (ii) If every reversed inequality of (4.2) holds, then
F is a repeller.

Proof In order to simplify the proof, we consider a rescaled system of (2.1). We use
the same rescaling as in [26]. Let x̃i = αi xi and

s̃0 = s0
α1

α0
, s̃1 = s1

α2

α1
, . . . , s̃n−1 = sn−1

α0

αn−1
.

Then we obtain

x̃(t + 1) = L [̃x(t)]̃x(t)

satisfying

(A1)′ σd (̃x) = σ(|̃x|) and σi (̃x) = 1 for all i �= d.

The inequalities (4.2) is reduced to

s̃d−1 < 1

s̃d−1̃sd−2 < 1
...

s̃d−1̃sd−2 · · · s̃d−n+1 < 1.

Note that each s̃i can be any positive number depending on the distribution of αi . We
investigate the dynamics of the rescaled system satisfying (A1)′ since it has the same
qualitative dynamics as (2.1) satisfying (A1). In the remainder of the proof, we omit
the tildes.

Consider case (i). Let δ be an arbitrary number in the interval (0, 1). Since (2.1) is
permanent, we can choose δ′ ∈ (0, δ) such that every solution x(t) with x(0) ∈ F(δ)
satisfies x(t) ∈ F(δ′) for all t ≥ 0 (see Theorem A.3). The condition (4.2) implies
that there exists a constant c ∈ (0, 1) such that each product in (4.2) is less than c.
Define h : [δ′, 1/δ′] → R by h(u) = ln σ(u) − ln σ(cu). Then h has the maximum

 and the monotonicity of σ implies 
 < 0.
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Let x ∈ Fi (δ). Then f m(x) ∈ Fd holds for some m ∈ N . Therefore, by (A1)′, we
have the expression

gi (x) = R0σi+n−1( f n−1(x)) · · · σi+1( f (x))σi (x)

= R0σd( f m(x))

= R0σ(| f m(x)|).

Let j �= i . Then g j (x) = R0σ(| f m′
(x)|) for some m′ ∈ N , m′ �= m. By the definition

of c, if m′ > m,

| f m+n(x)| = sd−1sd−2 · · · sd−(m+n−m′)| f m′
(x)|

< c| f m′
(x)|,

and if m > m′,

| f m(x)| = sd−1sd−2 · · · sd−(m−m′)| f m′
(x)|

< c| f m′
(x)|.

Note that f m+n(x), f m(x) ∈ Fd . Let x′ = G(x) if m′ > m and x′ = x if m > m′.
Then, by the monotonicity of σ , we obtain

ln g j (x)− ln gi (x′) = ln{R0σ(| f m′
(x)|)} − ln{R0σ(| f m(x′)|)}

= ln σ(| f m′
(x)|)− ln σ(| f m(x′)|)

< ln σ(| f m′
(x)|)− ln σ(c| f m′

(x)|).

Since Gk(x), Gk(x′) ∈ Fi (δ
′), the inequality ln g j (Gk(x))− ln gi (Gk(x′)) < 
 holds

for all k ≥ 0.
Let ε ∈ (0,−
/n). Then, by Lemma 4.2, there exists an integer Ti ≥ 1 such that

(4.1) holds for all x ∈ Fi (δ
′) ⊃ Fi (δ) and t ≥ Ti . If we choose T = maxi∈N {Ti }, then

�−
T (x) < (n − 1)ε + ε +
 < 0

holds for all x ∈ F(δ). Theorem 4.1 (i) completes the proof for case (i).
Since case (ii) can be proved similarly, we omit its proof. 	

Let us interpret condition (4.2). First, assume that α0, α1, . . . , αn−1 are identical.

Notice that (4.2) does not include the parameter sd . Hence, under the assumption
s0, . . . , sn−2 ∈ (0, 1] and sn−1 ∈ (0,∞), (4.2) holds if d = n − 1 and sn−2 < 1. This
case corresponds to the case studied by Mjølhus et al.[26]. This result implies that if
the density dependence is restricted to the survival process of the matured class, the
birth process or both, then the single-class state is attractive. On the other hand, under
the assumption s0, . . . , sn−2 ∈ (0, 1] and sn−1 ∈ (0,∞), the condition for case (ii)
holds if d = 0 and R0 > 1. This result implies that if only the survival probability of
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the newborn class is density dependent, then the single-class state does not attract any
positive orbits.

Consider the case where α0, α1, . . . , αn−1 are not identical. If αd is sufficiently
small in comparison with all other αi , i.e., the survival provability of class d is insen-
sitive to its own population density xd , then (4.2) holds. Conversely, the reversed
inequalities in (4.2) hold if αd is sufficiently large in comparison with all other αi , i.e.,
the survival provability of class d is sensitive to its own population density xd .

4.2 Density dependence NOT restricted to a single age-class

In this subsection, we consider a case where all functions σi are density dependent. For
convenience, we define the functions θi j : R+ → (0,∞), i, j ∈ N , by θi j = σi |Fj ,
which is the function σi restricted to Fj . Then an easily verifiable condition for the
attractivity of F is given as follows (Theorem 4.4 does not contain Theorem 4.3 as a
special case; see below).

Theorem 4.4 Suppose that (H1) holds and (2.1) is permanent. (i) If the inequalities

max
j∈N\{i} θ j i (u) ≤ θi i (u), i = 0, 1, . . . , n − 1, (4.3)

hold for all u > 0 and one of the inequalities strictly holds for all u > 0, then for all
small δ > 0 there exists a neighborhood U (δ) of F(δ) in R

n+ such that ω f (x) ⊂ F
for all x ∈ U (δ). (ii) If the inequalities

min
j∈N\{i} θ j i (u) ≥ θi i (u), i = 0, 1, . . . , n − 1, (4.4)

hold for all u > 0 and one of the inequalities strictly holds for all u > 0, then F is a
repeller

Proof Consider case (i). Let δ be an arbitrary number in the interval (0, 1). Since
(2.1) is permanent, we can choose a δ′ ∈ (0, δ) such that every solution x(t) with
x(0) ∈ F(δ) satisfies x(t) ∈ F(δ′) for all t ≥ 0 (see Theorem A.3). Define h ji :
[δ′, 1/δ′] → R by h ji (u) = ln θ j i (u)− ln θi i (u). Then h ji has the maximum c ji and
the assumption on θ j i implies

c ji ≤ 0 and min
i∈N

max
j∈N\{i} c ji = 
 < 0.

Let x ∈ Fi (δ). Then, by assumption, we obtain

ln g j (x)− ln gi (x) =
n−1∑
k=0

[
ln{θ j+k,i+k(| f k(x)|)} − ln{θi+k,i+k(| f k(x)|)}

]

≤
n−1∑
k=0

c j+k,i+k ≤ 
,
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where the subscripts of θi j and ci j are counted modulo n. Since Gk(x) ∈ Fi (δ
′) for

all k ≥ 0, ln g j (Gk(x))− ln gi (Gk(x)) ≤ 
 holds for all k ≥ 0.
Let ε ∈ (0,−
/n). Then, by Lemma 4.2, there exists an integer Ti ≥ 1 such that

(4.1) holds for all x ∈ Fi (δ
′) ⊃ Fi (δ). Let T = max{Ti }. Then

�−
T (x) ≤ ε(n − 1)+ ε +
 < 0

holds for all x ∈ F(δ). Theorem 4.1 (i) completes the proof for case (i).
Since case (ii) can be proved similarly, we omit its proof. 	


Remark As mentioned above, Theorem 4.4 does not contain Theorem 4.3 as a special
case. Furthermore, Theorem 4.4 is not applicable to the case where at least one of the
functions σi is density independent. For instance, assume σk(x) = 1. Then θll(u) �= 1
must hold for some l (if θi i (u) = 1 for all i , then all single-class orbits go to infinity
or zero, i,e., system (2.1) is not permanent). Hence (4.3) (resp. (4.4)) does not hold
for i = l (resp. i = k).

Let σ : R+ → (0,∞) be a decreasing function. Suppose that each function θi j

satisfies θi j (u) = σ(ai j u) with ai j ≥ 0. Then (4.3) is reduced to

min
j∈N\{i} a ji ≥ aii , i = 0, 1, . . . , n − 1. (4.5)

The parameter ai j denotes the sensitivity of the survival provability of class i to the
population density of class j . So, (4.5) implies that the survival provability of each
class is sensitive to the population densities of all other classes. That is, competition
is more severe between than within age-classes. Similarly, (4.4) is reduced to

max
j∈N\{i} a ji ≤ aii , i = 0, 1, . . . , n − 1, (4.6)

which implies that competition is more severe within than between age-classes.

5 Application

In this section, we apply Theorems 4.3 and 4.4 to specific examples of the Leslie
matrix model (2.1).

5.1 Example 1

Consider the application of Theorem 4.3. For simplicity, we assume that n = 3 and

σ0(x) = exp(−α0x0 − α1x1 − α2x2), σ1 = 1, σ2 = 1.

Then it follows from Proposition 3.1 that system (2.1) is dissipative [(H2)′–(ii) is
satisfied]. Furthermore, by Propositions 3.3 and 3.4, system (2.1) is permanent if and
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(a)

(b)

Fig. 1 Temporal variations of system (2.1) with n = 3. The functionsσi are given byσ0(x) = exp(−α0x0−
α1x1 − α2x2), σ1 = σ2 = 1. The initial condition is x0(0) = 1, x1(0) = x2(0) = 0.1. The parameters are
s0 = s1 = 0.5, R0 = 2 (thus s2 = R0/(s0s1) = 8), a α0 = 1, α1 = α2 = 10 and b α0 = α1 = α2 = 1

only if R0 = s0s1s2 > 1. The inequalities in (4.2) are reduced to

s2α0 < α2 and s1s2α0 < α1.

These inequalities hold if α0 is sufficiently small in comparison with α1 and α2, i.e.,
the survival probability of the newborn class is sufficiently insensitive to its own
population density. If the above inequalities are satisfied in addition to R0 > 1, then
F\O attracts a positive orbit (see Fig. 1a). Conversely, consider the case

s2α0 > α2 and s1s2α0 > α1.

These inequalities hold if α0 is sufficiently large in comparison with α1 and α2, i.e., the
survival probability of the newborn class is sufficiently sensitive to its own population
density. If the above inequalities are satisfied in addition to R0 > 1, then F is repelling
(see Fig. 1b).

In [28], system (2.1) with σ1(x) = · · · = σn−2(x) = σ(α0x0 + α1x1 + · · · +
αn−1xn−1) and σn−1(x) = 1 is studied. Although our result (Theorems 4.4 and 4.3)
is not applicable to such a system, an attractive single-class orbit is observed in [28].

5.2 Example 2

Let us consider the application of Theorem 4.4. For simplicity, we assume that n = 3
and
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(a)

(b)

(c)

Fig. 2 Temporal variations of system (2.1) with n = 3. The functions σ are given by σi (x) =
exp(− ∑2

j=0 ai j x j ) with ai j satisfying (5.1). The initial condition is x0(0) = 1, x1(0) = x2(0) = 0.1.
The parameters are s0 = s1 = 0.5, a R0 = 10 (thus s2 = R0/(s0s1) = 40), b R0 = 15 (thus
s2 = R0/(s0s1) = 60) and c R0 = 30 (thus s2 = R0/(s0s1) = 120)

σi (x) = exp

⎛
⎝−

2∑
j=0

ai j x j

⎞
⎠, i = 0, 1, 2,

where ai j > 0. Then it follows from Proposition 3.1 that system (2.1) is dissipative.
Furthermore, by Propositions 3.3 and 3.4, system (2.1) is permanent if and only if
R0 = s0s1s2 > 1. Consider the following matrix A = (ai j ):

A =
⎛
⎝

3 4 4
4 3 4
4 4 3

⎞
⎠. (5.1)

In this case, competition is more severe between than within age-classes and the matrix
A satisfies (4.3) (see also (4.5)). Thus F\O attracts a positive orbit under R0 > 1.
Three types of population dynamics are shown in Fig. 2. In Fig. 2a, which corresponds
to the case where R0 is slightly larger than one, the orbit converges to a single-class
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(a)

(b)

(c)

Fig. 3 Temporal variations of system (2.1) with n = 3. The functions σ are given by σi (x) =
exp(− ∑2

j=0 ai j x j ) with ai j satisfying (5.2). The initial condition is x0(0) = 1, x1(0) = x2(0) = 0.1.
The parameters are s0 = s1 = 0.5, a R0 = 30 (thus s2 = R0/(s0s1) = 120) and b R0 = 60 (thus
s2 = R0/(s0s1) = 240). In (c), the orbit x(t) (t = 0, 1, . . . , 105) of case (b) is depicted in the phase space

3-cycle. Although the population dynamics becomes complex as R0 increases, the
single-class state is still attractive. The population eventually fluctuates periodically
with period 6 in Fig. 2b, and aperiodically in Fig. 2c.

On the other hand, F is repelling if competition within age-classes is severe as
follows:

A =
⎛
⎝

3 1 1
1 3 1
1 1 3

⎞
⎠. (5.2)

Figure 3 shows two types of population dynamics. In Fig. 3a, which corresponds to the
case where R0 is slightly larger than one, the orbit converges to an interior fixed point
(see Fig. 3a). Although the population dynamics becomes complex as R0 increases,
any positive orbits do not approach the single-class state (see Fig. 3b, c).
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6 Concluding remarks

The dynamics of a general nonlinear Leslie matrix model for a semelparous population
has been investigated. It was shown that the total population can persist in the sense of
permanence if the basic reproduction number R0 > 1 (see Proposition 3.3). Conver-
sely, under a certain mild condition (σi (x) ≤ 1 for all i , i.e., the density dependence
always acts negatively), the population-free fixed point x = 0 is globally asymptoti-
cally stable if R ≤ 1 (see Proposition 3.4). Therefore, our result provides a condition
under which (2.1) is permanent if and only if R0 > 1.

In Sect. 4, the (local) attractivity of the single-class state F has been considered
(note that system (2.1) could have an attractor in the interior of R

n+ even if F is
attractive; see Sect. 9 of [10] for multiple attractors). Theorem 4.3 focuses on the case
where the density dependence is restricted to a single age-class, say class d, and σd

is a strictly decreasing function of the weighted sum α0x0 + α1x1 + · · · + αn−1xn−1.
This theorem implies that the single-class state F becomes attractive if the survival
probability of individuals in class d is sensitive to the individuals in classes i �= d.
If d = n − 1, this result is also interpreted as follow: the fecundity is sensitive to
the individuals in the lower classes. This is the same result as that in [26]. A more
general case is also considered in Sect. 4. For example, Theorem 4.4 is applicable to
the case where σi (x) = exp(−∑n−1

i=0 ai j xi ). Theorem 4.4 implies that the single-class
state F becomes attractive if the survival probability of each class is sensitive to the
individuals belonging to the other classes. Therefore, from Theorems 4.3 and 4.4, we
can conclude that the single-class state F becomes attractive if competition is more
severe between than within age-classes. This conclusion is the same as that in [1]. Our
results provide a further mathematical basis of the conclusion by Bulmer [1] (see also
[6,10,22]).

Let us focus on the periodical cicada case. As pointed out by May [25], in periodical
cicada populations, it is unlikely that inter and intra-class competition are greatly dif-
ferent since there is great variability in size among nymphs of the same age. However,
even in such a case, competition can become apparently more severe between than
within age-classes by incorporating the effect of predation with a functional response.
Let us construct an example. For simplicity, define

σ(x) = exp(−α0x0 − · · · − αn−1xn−1), αi > 0,

and assume that σ0(x) = · · · = σn−2(x) = σ(x). Let s0, . . . , sn−2 ∈ (0, 1] and sn−1 ∈
(0,∞). Then, as usual, siσi , i = 0, 1, . . . , n − 2, denotes the survival probability of
age-class i . To incorporate the effect of predation, we put

sn−1σn−1(x) = φp(x)sσ(x),

where sσ(x) is the survival probability of the last age-class until emergence, p(x) is
the fraction of adult individuals that escape from predation, and φ is the reproduction
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number of an adult individual. Define p(x) by

p(x) = exp

(
− a P

1 + aThsσ(x)xn−1

)
,

where P is the number of predator individuals (P is assumed to be constant), a is the
searching constant and Th is the handling time (see [12, p.12]). Therefore, the Holling
type II functional response is assumed. That is, the fraction of the adult individuals
that escape from the predation increases as the total number of adults, sσ(x)xn−1,
increases. Let sn−1 = φp(0) and σn−1(x) = p(x)σ (x)/p(0). Then (H1) and (H2)′-
(ii) are satisfied. The matrix (u) = (θi j (u)) is given by

(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−α0u e−α1u · · · e−αn−1u

e−α0u e−α1u · · · e−αn−1u

...
...

. . .
...

e−α0u e−α1u · · · e−αn−1uh(u)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where h(u) = exp[a P{1−1/(1+aThse−αn−1uu)}]. Hence the inequalities in (4.3) are
satisfied, and since h(u) > 1 for all u > 0, max j∈N\{n−1} θ j,n−1(u) < θn−1,n−1(u)
holds for all u > 0. That is, with the help of the predation, intra-class competition can
be relaxed in comparison with inter-class competition. Therefore, even if inter-class
competition is not intense, the effect of predation with a certain functional response
can leads to synchronous emergence of the periodical cicadas.

Our results, Theorems 4.3 and 4.4, also provide sufficient conditions under which
F is repelling. Since these conditions only ensure that F is repelling, some orbit could
converges to bdR

n+\F . In fact, we can construct an example that satisfies (4.4) but
some solution converges to a cycle on bdR

n+\F . Consider system (2.1) with σi (x) =
exp(−∑n−1

i=0 ai j x j ), n = 5. We obtain the population dynamics depicted in Fig. 4, if
we choose the parameters ai j as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 0.1 2 2 0.1

0.1 3 0.1 2 2

2 0.1 3 0.1 2

2 2 0.1 3 0.1

0.1 2 2 0.1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (6.1)

In Fig. 4, the orbit converges to a 5-cycle, along which two classes are always missing
but three classes are always present at any time. It is a future problem to investigate
the dynamical behavior in the case where F is repelling or F is neither repelling nor
attractive (see [5,6,9,11]).
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(a)

(b)

(c)

Fig. 4 Temporal variations of system (2.1) with n = 5. The functions σ are given by σi (x) =
exp(− ∑4

i=0 ai j x j ), i = 0, 1, . . . , 4, with ai j satisfying (6.1). The initial condition is x0(0) = x1(0) =
x2(0) = 1, x3(0) = x4(0) = 0.1. The parameters are s0 = s1 = s2 = s3 = 0.5, R0 = 10 (thus
s4 = R0/(s0s1s2s3))

Acknowledgments This research was partially supported by the Ministry of Education, Science, Sports
and Culture of Japan, Grant-in Aid for JSPS fellows, 18-9289, 2006.

A Appendix A

Consider the semi-dynamical system generated by the continuous map f : X → X ,
where X is a metric space. The (forward) orbit starting at x is defined by

γ+
f (x) := {y ∈ X : f t (x) = y for some t = 0, 1, . . .}.

The omega-limit set of x is defined by

ω f (x) :=
{

y ∈ X : lim
j→∞ f t j (x) = y for some sequence t j → ∞

}
.

123



800 R. Kon, Y. Iwasa

Let S and V be subsets of X . S is said to be forward invariant if f (S) ⊂ S. S is said
to be absorbing for V if S is forward invariant and γ+

f (x) ∩ S �= ∅ for every x ∈ V .
f is said to be dissipative if there exists a compact absorbing set S for X . S is said to
be a repeller if there exists a neighborhood U of S such that for all x /∈ S there exists
T > 0 satisfying f t (x) /∈ U for all t ≥ T . S is said to be an attractor if there exists
a neighborhood U of S such that ω f (x) ⊂ S for all x ∈ U . The following theorem of
average Liapunov functions is utilized to show that a compact forward invariant set S
is repelling (see also Theorem 2.2 [16] and Theorem 2.17 [18]).

Theorem A.1 (cf. Corollary 2.3 [15]) Assume that X is compact and that S is a
compact subset of X. Let S and X\S be forward invariant. Then S is a repeller if
there exists a continuous function P : X → R+ such that (i) P(x) = 0 if and only if
x ∈ S, and (ii) for all x ∈ S, supt≥1

∏t−1
k=0 ψ( f k(x)) > 1, where ψ : X → R+ is a

continuous function with P( f (x)) ≥ ψ(x)P(x).

By using the same technique, we can prove the following theorem, which is used
to show that a compact forward invariant set is attractive (see also Theorem 2.7 [14,
Corollary 2.3] and Theorem 2.18 [18]).

Theorem A.2 Assume that X is compact and that S is a compact subset of X. Let
S and X\S be forward invariant. Then S is an attractor if there exists a continuous
function P : X → R+ such that (i) P(x) = 0 if and only if x ∈ S,and (ii) for all
x ∈ S, inf t≥1

∏t−1
k=0 ψ( f k(x)) < 1, where ψ : X → R+ is a continuous function with

P( f (x)) ≤ ψ(x)P(x).

Proof For p ∈ (0, 1) and t ≥ 1, define

U (p, t) =
{

x ∈ X :
t−1∏
k=0

ψ( f k(x)) < p

}
.

Then U (p, t) is open. Since inf t≥1
∏t−1

k=0 ψ( f k(x)) < 1 for all x ∈ S,

S ⊂
⋃

p∈(0,1), t≥1

U (p, t)

holds. By the compactness of S, there exist p ∈ (0, 1) and t1, . . . , tm ≥ 1 such that
S ⊂ ⋃m

k=1 U (p, tk) =: W . Let t = max{t1, . . . , tm}.
Let Wp = {x ∈ X : P(x) < p}. Choose p ∈ (0, 1) such that W p ⊂ W , where

W p is the closure of Wp . Let x ∈ Wp ⊂ W . Then there exists t0 ∈ [1, t] such that
x ∈ U (p, t0). Furthermore, P( f t0(x)) < pP(x) holds. This implies f t0(x) ∈ Wp.
Therefore, by iteration, we obtain a sequence t j → ∞ with t j+1 − t j ∈ [1, t] such
that f t j (x) ∈ Wp and P( f t j (x)) → 0 as j → ∞. Since P( f t (x)) ≤ αP( f t j (x))
holds for all t ∈ [t j , t j+1], where α = max{∏t−1

k=0 ψ( f k(x)) : 1 ≤ t ≤ t, x ∈ X}, we
conclude that P( f t (x)) → 0 as t → ∞. This completes the proof. 	
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The following theorem is utilized to construct a compact absorbing set.

Theorem A.3 (Lemma 2.1 [16]) Let Y ⊂ X be open, and let N be open with a
compact closure N ⊂ Y . Assume that Y is forward invariant and that γ+

f (x)∩ N �= ∅
for every x ∈ Y . Then γ+

f (N ) is a compact absorbing set for Y .

B Appendix B

Consider the following difference equation:

x(t + 1) = A[x(t)]x(t), (B.1)

where A[x] = (ai j (x)) is an n × n matrix. Suppose that this system satisfies the
following conditions:

(A1) Each ai j (x) is continuous;
(A2) A[x]x ≥ 0 for all x ≥ 0;
(A3) A[x]x �= 0 for all x �= 0;
(A4) System (B.1) is dissipative.

Here x ≥ 0 implies xi ≥ 0 for all i . It is clear that system (2.1) with (H1) satisfies
(A1)–(A3).

A sufficient condition for dissipativity of (B.1) is given as follows.

Theorem B.1 (Theorem 2.2 [20]) Assume that (A1)–(A3) hold. Suppose that there
exist positive constants K > 0 and λ∞ ∈ (0, 1) such that the inequalities

∑n−1
i=0 ai j (x)

≤ λ∞, j = 0, 1, . . . , n − 1, hold for all x ≥ 0 with |x| ≥ K . Then system (B.1) is
dissipative.

The sufficient condition for permanence of (B.1) is given as follows.

Theorem B.2 (Theorem 3 [19]) Assume that (A1)–(A4) hold. Suppose that the matrix
A[0] is irreducible. Then system (B.1) is permanent if the dominant eigenvalue λ0 of
A[0] satisfies λ0 > 1.
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