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Abstract. In this paper, we consider population survival by using single-species stage-struc-
tured models. As a criterion of population survival, we employ the mathematical notation of
permanence. Permanence of stage-structured models has already been studied by Cushing
(1998). We generalize his result of permanence, and obtain a condition which guarantees
that population survives. The condition is applicable to a wide class of stage-structured
models. In particular, we apply our results to the Neubert-Caswell model, which is a typical
stage-structured model, and obtain a condition for population survival of the model.

1. Introduction

In population ecology, it is one of the most important task to predict population
dynamics. In particular, it is important to predict whether a given population can
survive in the long term. In this paper, by focusing on population dynamics of a
single species, we consider this problem and obtain a criterion which ensures that
population survives.

By using one-dimensional discrete-time models, conditions that ensure popula-
tion survival have been considered by several authors (for example, see Freedman
and So, 1987 and Cull, 1986). A general class of models is given by:

N(t + 1) = f (N(t))N(t), (1)

where t ∈ Z+ = {0, 1, 2, . . . }, N(t) is a population density at time t and f (N) is a
population growth rate which depends on the population density. The one-dimen-
sional discrete-time model (1) assumes that the vital rates of each individual, such
as rates of survival, development and reproduction, are uniform in the population.
However, they are different among the individuals and depend on a stage of life
cycle. To incorporate such heterogeneity into the model is one of the step to give
reality for the model. Such heterogeneity is incorporated in stage-structured mod-
els (see Caswell, 2001). This paper considers the population survival of a single
species by using stage-structured models.
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There are several mathematical criteria for population survival. Stability of a
coexistence equilibrium point is a simple criterion. However, it is well known that
the population can survive without stable coexistence equilibrium points (for exam-
ple, see May and Oster, 1975). Moreover, it is known that even if the model has a
stable coexistence equilibrium point, populations can go extinct depending on the
initial population densities (see Hadeler and Gerstmann, 1990, Neubert and Kot,
1992, Kon and Takeuchi, 2001, Kot, 2002, Chapter 11). Therefore, we use perma-
nence, which is defined below, as a criterion for population survival. The criterion
can evaluate the possibility of population survival irrespective of stability of coex-
istence equilibrium points (see Hutson and Schmitt, 1992 for review of permanence
and Anderson, 1992 for shorter introductions).

Studies of permanence for single-species stage-structured models are found in
Cushing (1998). A sufficient condition for permanence is given in his book. We
show that our result generalizes his result and is applicable to a wider class of
stage-structured models.

This paper is organized as follows. In Section 2, we introduce a general stage-
structured model of a single species given by an autonomous difference equation,
which has density dependence terms. We also give a specific example of a sin-
gle-species stage-structured model. In Section 3, we define permanence of a stage-
structured model, and obtain a mathematical criterion for permanence. Moreover,
we apply our results to a specific example which is introduced in Section 2. The
final section includes discussion and future problems. Some proofs are given in the
Appendices.

2. Stage-structured models

We consider population dynamics of a single species. The population is assumed to
be divided into n classes depending on age, size or developmental stages. Let x(t) =
(x1(t), . . . , xn(t))

T be a population density vector. Each xi(t) (i ∈ {1, . . . , n})
indicates population density in the i-th stage at time t . Then a stage-structured
model is given by the following:

x(t + 1) = Ax(t)x(t), t ∈ Z+, (2)

where Ax is an n × n matrix whose elements depend on x. If x = 0, then Ax
is denoted by A0. The (i, j) elements of the matrix A0 is denoted by aij (i, j ∈
{1, . . . , n}). By biological restrictions, the matrix Ax is assumed to be non-nega-
tive for all x ∈ R

n+ = {x ∈ R
n : x1 ≥ 0, . . . , xn ≥ 0}. Then the solution with

x(0) ∈ R
n+ does not leave R

n+ (i.e., R
n+ is forward invariant).

Stage-structured models are often characterized by directed graph, which is
called a life cycle graph. The life cycle graph is constructed by drawing a directed
edge from a node j to i whenever aij > 0. A particular example of the life cycle
graph is given in Fig. 1.

One of the important properties of the matrix A0 is irreducibility. A non-neg-
ative matrix is said to be reducible if it can be rearranged into the following form
by renumbering the indices of the rows and columns:
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σ1(1 − γ ) σ2

Fig. 1. The life cycle graph of Model (3)

(
A11 O

A21 A22

)
,

where the matrices Aii are square matrices and O denotes the matrix with only zero
elements. The irreducibility can be checked using life cycle graphs (see Caswell,
2001, p.81). A non-negative matrix is irreducible if and only if the corresponding
life cycle graph contains a path from every node to every other node along directed
edges.

The example of a typical stage structured model is a Neubert-Caswell model
(see Neubert and Caswell, 2000), which is given by (2) with

Ax =
(

σ1f1(x)(1 − γf3(x)) φf4(x)

σ1f1(x)γf3(x) σ2f2(x)

)
, (3)

where σ1, σ2, γ ∈ [0, 1], φ > 0 and fi : R
2+ → (0, 1] with fi(0) = 1 for i ∈

{1, . . . , 4}. The population is assumed to be divided into two classes depending on
developmental stages, immature and mature stages. The functions fi (i = 1, . . . , 4)
represent the density dependence part of the parameters σ1, σ2, γ and φ, respec-
tively. The parameters have the following meanings if x = 0. σ1 and σ2 are the
fractions of juveniles and adults that survive to the next generation, respectively.
γ is the fraction of the surviving juveniles that mature to become adults. φ is the
number of juveniles produced by an adult. The life cycle graph of the system is
given in Fig. 1. By the figure, we see that the matrix A0 is irreducible if and only if

σ1γφ > 0. (4)
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We will consider this particular example of stage-structured models in the subsec-
tion 3.1 of Section 3.

3. Permanence

We define permanence as follows (see also Fig. 2):

Definition 1. Let N(t) = ∑n
i=1 xi(t), which is the total population density. Model

(2) is said to be permanent if there exist δ > 0 and D > 0 such that

δ < lim inf
t→∞ N(t) ≤ lim sup

t→∞
N(t) < D

for all x(0) ∈ R
n+ with N(0) > 0.

Remark. In the book of Cushing (1998), System (2) is said to be uniformly persis-
tent (with respect to 0) if there exists a δ > 0 such that lim inf t→∞ N(t) > δ for all
x(0) ∈ R

n+ with N(0) > 0. Therefore, uniformly persistent system is permanent
if and only if it has no unbounded solutions in the sense that there exists a D > 0

x1

x2

D

δ

Dδ

Fig. 2. The definition of permanence in the case of two stages. If the system is permanent,
all orbits which do not start at the origin eventually enter and remain in the hatched region
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such that lim supt→∞ N(t) < D for all x(0) ∈ R
n+ with N(0) > 0. In the theorem

of uniform persistence given by Cushing (1998), it is assumed that a system has
no unbounded solutions. Hence, we can simply compare the results of uniform
persistence given by Cushing (1998) and permanence given in the present paper
(see below).

The definition of permanence ensures that the total population density nei-
ther explodes nor goes to zero if the system is permanent. From this definition,
we see that even if the system is permanent, the population density in each of
stages does not have to be positive at every time, and we require it only for the
total population density. This property is appropriate for the stage-structured sys-
tem (2) because if for every time t there is at least one stage in which popu-
lation density is positive, we conclude that the species survives. We must also
note that the variables x1, . . . , xn of the stage-structured model (2) do not denote
population densities of different species but the population density of the same
species.

The property that the population density does not explode is important for per-
manence. This property is defined mathematically as dissipativeness:

Definition 2. System (2) is said to be dissipative if there exists a compact set X ⊂
R

n+ such that for all x(0) ∈ R
n+ there exists a T = T (x(0)) satisfying x(t) ∈ X for

all t ≥ T .

We obtain the following theorem of permanence (seeAppendixA for the proof):

Theorem 3. Suppose System (2) is continuous and dissipative. Assume the matrix
A0 is irreducible and R

n+\{0} is forward invariant (i.e., Axx ∈ R
n+\{0} for all

x ∈ R
n+\{0}). System (2) is permanent if A0 has an eigenvalue λ with |λ| > 1 (i.e.,

the magnitude of the dominant eigenvalue of A0 is greater than one).

Remark. Note that if the magnitude of the dominant eigen value of A0 is less than
one, then the system is not permanent since the origin is stable.

Remark. Cushing (1998) shows that System (2) is permanent if the above assump-
tions hold and, additionally, the matrix A0 is primitive (i.e., there exits a k > 0
such that all elements of Ak

0 are positive) and hyperbolic (i.e., no eigenvalues λ

of A0 satisfy |λ| = 1) (see Theorem 1.2.1 in Cushing, 1998). Therefore, The-
orem 3 generalizes his result. An example which shows that System (2) can be
permanent without primitivity of the matrix A0 is given in Section 4 (see also
Fig. 5).

Remark. By this theorem, it is ensured that an irreducible non-negative matrix A0
with the dominant eigenvalue λ > 1 cannot have non-negative eigenvectors of
eigenvalues with module less than one since stable manifolds of the origin cannot
belong to R

n+ (see also Gantmacher, 1959, p.63)

The condition about eigenvalues of A0 in Theorem 3 implies that the origin of
System (2) is unstable since A0 is equal to the Jacobian matrix of System (2) at the
origin. Note that we have assumed that Ax is non-negative for all x ∈ R

n+, which
implies the invariance of R

n+ for System (2).
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3.1. Example (The Neubert-Caswell model)

We consider permanence of the Neubert-Caswell model (that is, System (2) with
(3)). Hereafter, we check the conditions in Theorem 3 one by one. The system is
clearly continuous if each fi is a continuous function. Since all fi are defined as
fi : R

2+ → (0, 1], Ax is non-negative. Moreover, R
2+\{0} is forward invariant if

σ1 > 0 or σ2 + φ > 0. (5)

The dissipativeness of the system is given by the following theorems (see Appendix
B for the proof):

Theorem 4. Suppose

1 − σ1(1 − γ ) > 0 and 1 − σ2 > 0. (6)

If one of f1(x)x1, f3(x)x1 or f4(x)x2 is bounded above, then the Neubert-Caswell
model is dissipative.

It is worth to note that the system can have an unbounded orbit even if it has a
density dependent term. In fact, we have the following theorem (see Appendix C
and also Neubert and Caswell, 2000):

Theorem 5. Assume that f1(x) = f3(x) = f4(x) = 1. If φ > [1 − σ1(1 −
γ )]/(σ1γ ), then the Neubert-Caswell model has an unbounded solution.

Theorem 5 shows that it is possible for the Neubert-Caswell model to be non-dis-
sipative if the assumption of Theorem 4 is not satisfied.

The matrix A0 of the system is given by

A0 =
(

σ1(1 − γ ) φ

σ1γ σ2

)
,

which is clearly non-negative under the assumption that σ1, σ2, γ ∈ [0, 1] and
φ ≥ 0. By the life cycle graph, Fig. 1, we can see that A0 is irreducible if and only
if (4) holds. The matrix A0 has an eigenvalue λ with |λ| > 1 if and only if the
following inequality holds (see Neubert and Caswell, 2000):

σ1γφ > (1 − σ2){1 − σ1(1 − γ )}. (7)

Define an inherent net reproductive rate R0 as follows (see Neubert and Caswell,
2000):

R0 = σ1γφ

(1 − σ2){1 − σ1(1 − γ )} . (8)

It is easy to check that (7) implies (4) and (5). Furthermore, (6) implies that the
denominator of (8) is positive. Therefore, under the assumption that (6) holds, the
inequality R0 > 1 implies that (4), (5) and (7) hold. Then we obtain the following
result:
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Fig. 3. Bifurcation diagrams of the Neubert-Caswell model. The total population density
N(t) = x1(t) + x2(t) is plotted for the orbit {x(t)}t∈{1001,... ,1050} with x(0) = (1, 1) against
ln R0 ≈ (ln φ) − 2.293. The parameters are σ1 = 0.5, σ2 = 0.1 and γ = 0.1

Theorem 6. Assume the conditions in Theorem 4 hold. The Neubert-Caswell model
is permanent if R0 > 1.

As an example, consider fi(x) = exp(−(x1 + x2)) (i ∈ {1, 3, 4}) as density
dependence functions. The bifurcation diagram of the model is given in Fig. 3.
Clearly, if the condition in Theorem 6 holds, the population survives. From Fig. 3,
we see that permanence of the Neubert-Caswell model can be estimated by Theo-
rem 6 irrespective of the complexity of the internal orbits (see Neubert and Caswell,
2000, for details of the complex interior orbits of the model).

4. Discussion

In this paper, we considered the survival of populations whose dynamics are
described by the stage-structured model (2), and obtain conditions for permanence.
We show that the magnitude of the dominant eigenvalue of A0 is important in the
study of permanence (see Theorem 3). Theorem 3 is applicable to a wide class of



522 R. Kon, Y. Saito, Y. Takeuchi

stage-structured models and the conditions for permanence (except dissipativeness)
are usually straightforward to check. As an illustration we applied Theorem 3 to
the Neubert-Caswell model and obtained conditions for its permanence (Theorem
6). An interesting problem is to obtain criteria for the dissipativeness of model (2).

Global dynamical properties of stage-structured models with density depen-
dence terms have been investigated in literature (for example, see Cushing, 1998 and
Crowe, 1994 and 2001). The studies of Cushing (1998) and Crowe (2001) are related
to ours since they investigated the possibility that population survives for stage-
structured models with density dependence terms. In the book of Cushing (1998),
he assumed that the matrix A0 is primitive in order to show that the stage-structured
model (2) is permanent. However, our result (Theorem 3) shows that this assumption
is not necessary for permanence. An example of the model which is permanent but
has an imprimitive matrix A0 is given below. Crowe (2001) studied a class of nonlin-
ear models possessing a stable stage distribution, that is, limt→∞ x(t)/

∑n
i=1 xi(t)

exists for all x(0) ∈ R
n+\{0}. Therefore, we see that our results can be applied to a

wider class of stage-structured models than the result given by Crowe (2001) (see
Fig. 4 for a system which is permanent without a stable stage distribution).

In Section 2, we defined a permanent system with stages by the system whose
total population density is bounded both from zero and infinity.Therefore, even if the
system has a stable cycle on bdR

n+ (the boundary of R
n+), the system is permanent as

long as the total population density is bounded both from zero and infinity. In some
stage-structured models, cycles on bdR

n+ such as {(x∗
1 , 0, . . . , 0), (0, x∗

2 , . . . , 0),

. . . , (0, 0, . . . , x∗
n)} are found (see Cushing and Li, 1992, Wikan and Mjølhus,

0.8

0.9

1

0 20 40 60 80 100 t

x1(t)

x1(t) + x2(t)

Fig. 4. The fluctuation of x1(t)/(x1(t) + x2(t)). The initial condition is x(0) = (1, 1). The
parameters are σ1 = 0.5, σ2 = 0.1, γ = 0.1 and φ = exp(6). The density dependence
terms are set by f1 = f2 = f3 = 1 and f4 = exp(−(x1 + x2)). The inherent net repro-
ductive rate R0 ≈ 40.7. By Theorem 6, the system is permanent. However, the dynamics of
x1(t)/(x1(t) + x2(t)) shows that the system does not have a stable stage distribution
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Fig. 5. The fluctuation of population densities in each stage. The solid and dashed lines rep-
resent population dynamics of x1(t) and x2(t), respectively. The initial condition is x(0) =
(1, 1). The parameters are σ1 = 0.5, σ2 = 0, γ = 1 and φ = 3. The density dependence
terms are f1(x) = f2(x) = f3(x) = 1 and f4(x) = exp(−(x1 + x2)). In this case, R0 = 1.5

1996, Davydova et al., 2003). For example, consider the Neubert-Caswell model
with σ1 ∈ (0, 1], σ2 = 1, γ = 1, φ > 0 and f3(x) = 1. Then the system is rewritten
as follows: {

x1(t + 1) = φf4(x1(t), x2(t))x2(t)

x2(t + 1) = σ1f1(x1(t), x2(t))x1(t).

Note that the matrix A0 corresponding to this system is imprimitive. The system
can have a 2-cycle of the form {(x∗

1 , 0), (0, x∗
2 )}, which satisfies

{
x∗

1 = φf4(0, x∗
2 )x∗

2
x∗

2 = σ1f1(x
∗
1 , 0)x∗

1 .

If f1(x) = 1 and f4(x) = exp(−(x1 + x2)), then the system becomes a special
case of the system investigated by Wikan and Mjølhus (1996) and Davydova et
al. (2003). In this case, the 2-cycle exists if and only if R0 = φσ1 > 1, and is
stable if 0 < ln φσ1 < 2 (see Fig. 5 for an illustration and Davydova et al., 2003,
for the full details of the analysis of the system). Note that the system shown in
Fig. 5 is permanent since the conditions in Theorem 6 hold. Hence, we can see
that the definition of permanence of stage-structured models evaluates properly the
survival of the populations. It is a future work to obtain a criterion of permanence
of the stage-structured model (2) with respect to bdR

n+, which ensures that there
exist δ > 0 and D > 0 such that δ < lim inf t→∞ xi(t) ≤ lim supt→∞ xi(t) < D

for all x(0) ∈ intRn+ = R
n+\bdR

n+ and i ∈ {1, 2, . . . , n}.

A. The proof of Theorem 3

Before giving the proof of Theorem 3, we introduce some mathematical notation
and theorems about the dynamical system F : X → X and non-negative matrices.
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The orbit starting at x is the set

γ+(x) = {y : y = F t(x) for t ∈ Z+},

where F t represents the t-th composition of F . For a subset X0 ⊂ X let

γ+(X0) =
⋃

x∈X0

γ+(x).

X0 is said to be forward invariant if F(X0) ⊂ X0. A set M is absorbing for X0 if
it is forward invariant and γ+(x) ∩ M 
= ∅ for every x ∈ X0.

Theorem 7 (Hutson, 1984, Theorem 2.2). Let (X, d) be a metric space. Consider a
continuous function F : X → X. Assume X is compact and S is a compact subset
of X with empty interior. Let S and X\S be forward invariant. Suppose there is a
continuous function P : X → R+, called an average Liapunov function (Hutson,
1984), that satisfies the following conditions:

(a) P(x) = 0 ⇐⇒ x ∈ S,

(b) sup
t≥0

lim inf
y→x

y∈X\S

P (F t (y))

P (y)
> 1 (x ∈ S).

Then S is a repellor, that is, there is a compact set M ⊂ X\S such that for all
x ∈ X\S there exists a T = T (x) > 0 satisfying F t(x) ∈ M for all t ≥ T .

We use the following theorem in the application of Theorem 7 to dissipative
systems:

Theorem 8 (Hutson, 1984, Lemma 2.1, Hofbauer et al., 1987, Lemma 2.1). Let
F : X → X be continuous, where X is a metric space. Let U be open with compact
closure, and suppose that V is open and forward invariant, where U ⊂ V ⊂ X.
Then if γ+(x) ∩ U 
= ∅ for every x ∈ V , γ+(U) is compact and absorbing for V .

F is said to be dissipative if there exists a compact set U0 ⊂ X such that for all
x ∈ X there exists a T = T (x) satisfying F t(x) ∈ U0 for all t ≥ T . Even if F

is dissipative (let U0 be the corresponding set) it is not ensured that U0 is forward
invariant since F t(x) can be allowed to belong to X\U0 for some t > 0. However,
this theorem ensures that if F is continuous, γ+(U) becomes forward invariant for
some open set U ⊃ U0 with compact closure. Hence, if System (2) is dissipative,
we can construct a compact absorbing set for R

n+. Therefore, for the consideration
of permanence it is enough to investigate the dynamics in the compact absorbing
set, which, hereafter is denoted by X.

Theorem 9 (The Perron-Frobenius theorem). Suppose A is an irreducible n × n

matrix with non-negative elements. Then there exists a positive eigenvalue λ which
is dominant in the sense that |µ| ≤ λ for all other eigenvalues µ of A. There exist
right and left eigenvectors u > 0 and v > 0 such that Au = λu and AT v = λv.
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Proof of Theorem 3. Since System (2) is dissipative, Theorem 8 guarantees that
there exists a forward invariant compact set X ⊂ R

n+ such that all orbits in R
n+

ultimately enter X. Therefore, it is enough to focus on the orbits in X.
Let S = {0}. Since the origin is a fixed point and R

n+\{0} is forward invariant,
it is clear that S and X\S are forward invariant.

We construct an average Liapunov function as follows. By the Perron-Frobe-
nius theorem, there exists a left eigenvector v > 0 such that AT

0 v = λv, where λ

is a positive eigenvalue of A0. We employ P(x) = v · x as an average Liapunov
function, where ”·” denotes inner product. The condition (a) in Theorem 7 clearly
holds.

Let us check the condition (b) in Theorem 7:

σ = sup
t≥0

lim inf
y→0

y∈X\S

P (F t (y))

P (y)

= sup
t≥0

lim inf
y→0

y∈X\S

P (F t (y))

P (F t−1(y))
. . .

P (F 2(y))

P (F (y))

P (F (y))

P (y)

= sup
t≥0

lim inf
y→0

y∈X\S

t−1∏
i=0

[
v · F i+1(y)

v · F i(y)

]

= sup
t≥0

lim inf
y→0

y∈X\S

t−1∏
i=0

[
λ + v · F i+1(y) − λv · F i(y)

v · F i(y)

]

= sup
t≥0

lim inf
y→0

y∈X\S

t−1∏
i=0

[
λ + (AT

F i(y)
v − λv) ·

(
F i(y)

v · F i(y)

)]
,

where F is defined as a right-hand side of (2). Note that F i(y) 
= 0 for every i ≥ 0
by the forward invariance of R

n+\{0}. By the definition of v and λ, we have

lim
y→0

AT
Fi(y)

v − λv = 0.

Furthermore, we have the boundedness of F i(y)/(v · F i(y)). In fact, the following
inequality holds for all F i(y) ∈ X\S:

(F i(y))k

v · F i(y)
≤ (v · F i(y))/vk

v · F i(y)
= 1

vk

,

where (F i(y))k and vk are a k-th elements of the vector F i(y) and v, respectively.
Therefore, we obtain σ = supt≥0 λt > 1. This implies that the system is permanent.
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B. The proof of Theorem 4

Let {x(t)}t∈Z+ be a solution of the Neubert-Caswell model. First, assume that one
of fi(x)x1 (i = 1, 3) is bounded above, that is, there exists a K0 > 0 such that
fi(x)x1 ≤ K0 for all x ∈ R

2+ and i = 1 or 3. From the equation for x2, we have

x2(t + 1) = σ1f1(x(t))γf3(x(t))x1(t) + σ2f2(x(t))x2(t)

≤ σ1γfi(x(t))x1(t) + σ2x2(t)

≤ σ1γK0 + σ2x2(t).

Since 0 ≤ σ2 < 1, there exists T1 = T1(x(0)) > 0 such that

x2(t) ≤ σ1γK0

1 − σ2
× 2 = K1

for all t ≥ T1(x(0)). If σ1 
= 1, then from the equation for x1 we have

x1(t + 1) = σ1f1(x(t)){1 − γf3(x(t))}x1(t) + φf4(x(t))x2(t)

≤ σ1x1(t) + φx2(t)

≤ σ1x1(t) + φK1

for t ≥ T1(x(0)). Then by induction there exists T2 = T2(x(0)) such that

x1(t) ≤ φK1

1 − σ1
× 2 = K2

for all t ≥ T2(x(0)). Take T (x(0)) = max{T1(x(0)), T2(x(0))} and K =
max{K1, K2}. Then x1(t) ≤ K and x2(t) ≤ K for t ≥ T (x(0)). If γ 
= 0,
then similarly we have

x1(t + 1) = σ1f1(x(t)){1 − γf3(x(t))}x1(t) + φf4(x(t))x2(t)

≤ {1 − γf3(x(t))}x1(t) + φx2(t)

≤ {1 − γf3(x(t))}x1(t) + φK1

for t ≥ T1(x(0)). Note that γ 
= 0 implies that 0 < 1 − γf3(x(t)) < 1 for all
x(t) ≥ 0. Then there exists K2 in the argument above. This completes the proof of
the first case.

Next, assume that f4(x)x2 is bounded above, that is, there exists a K0 > 0 such
that f4(x)x2 ≤ K0 for all x ∈ R

2+. If 0 ≤ σ1 < 1, then from the equation for x1 we
have

x1(t + 1) = σ1f1(x(t)){1 − γf3(x(t))}x1(t) + φf4(x(t))x2(t)

≤ σ1x1(t) + φf4(x(t))x2(t)

≤ σ1x1(t) + φK0.

Then there exists T1 = T1(x(0)) > 0 such that

x1(t) ≤ φK0

1 − σ1
× 2 = K1
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for all t ≥ T1(x(0)). If γ 
= 0, then similarly we have

x1(t + 1) = σ1f1(x(t)){1 − γf3(x(t))}x1(t) + φf4(x(t))x2(t)

≤ {1 − γf3(x(t))}x1(t) + φf4(x(t))x2(t)

≤ {1 − γf3(x(t))}x1(t) + φK0.

Since γ 
= 0 implies that 0 < 1 − γf3(x(t)) < 1 for all x(t) ≥ 0, there exists
T1 = T1(x(0)) > 0 and K1 such that x1(t) ≤ K1 for all t ≥ T1(x(0)). From the
equation for x2, we have

x2(t + 1) = σ1f1(x(t))γf3(x(t))x1(t) + σ2f2(x(t))x2(t)

≤ σ1γ x1(t) + σ2x2(t)

≤ σ1γK1 + σ2x2(t)

for t ≥ T1(x(0)). Then there exists T2 = T2(x(0)) such that

x1(t) ≤ σ1γK1

1 − σ2
× 2 = K2

for all t ≥ T2(x(0)). Take T (x(0)) = max{T1(x(0)), T2(x(0))} and K =
max{K1, K2}. Then x1(t) ≤ K and x2(t) ≤ K for t ≥ T (x(0)). This completes
the proof. ��

C. The proof of Theorem 5

When f1(x) = f3(x) = f4(x) = 1, the Neubert-Caswell model is given by x(t +
1) = Axx(t), where

Ax =
(

σ1(1 − γ ) φ

σ1γ σ2f2(x)

)
.

Consider

y(t + 1) = By(t),

where

B =
(

σ1(1 − γ ) φ

σ1γ 0

)
.

By the assumption, the matrix B has an eigenvalue λ > 1 and from the Perron-
Frobenius theory, there exists a right eigenvector u > 0 such that Bu = λu. Choose
y(0) = u. Then the solution y(t) = λtu → +∞ as t → +∞. It is trivial that
x(t) ≥ y(t) if x(0) ≥ y(0). In fact,

x(t + 1) − y(t + 1) =
(

σ1(1 − γ ) φ

σ1γ 0

)
(x(t) − y(t)) +

(
0

σ2f2(x(t))x2(t)

)
≥ 0

for x(t) ≥ y(t). This shows that x(t) → +∞ as t → +∞ for x(0) ≥ y(0) = u.
This completes the proof. ��
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