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It is well known that a simple "rst-order di!erence equation can exhibit complex population
dynamics, such as sustained oscillations and chaos. An interesting problem is whether such
oscillatory dynamics are expected to occur in real populations. This paper assumes that the
resident system is composed of 1-host and 1-parasitoid and that only the host is allowed to
evolve, but not the parasitoid. Based on the invasibility of a host to host}parasitoid systems,
we investigate the dynamics of the host}parasitoid system favored by natural selection. We
consider two cases. In the "rst case, the host's evolution involving both the intrinsic growth
rate and the sensitivity to density is considered. In the second case, the host's evolution
involving both the intrinsic growth rate and the vulnerability to the parasitoid is considered. In
both cases, we see that the dynamics with a stable equilibrium will not be favored by natural
selection without the trade-o! between the host's traits which are allowed to evolve. The
host}parasitoid system with a stable equilibrium will be eventually invaded by a host type that
develops an unstable equilibrium with the parasitoid. If there is a trade-o! between the host's
traits which are allowed to evolve, a host}parasitoid system with a stable equilibrium can be
favored by natural selection.
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1. Introduction

Many previous works show that some popula-
tion models can have very complex dynamics,
namely sustained oscillations and chaos. In par-
ticular, such complex dynamics are easily found
in discrete-time density-dependent models even if
their dimension is low. For example, May &
Oster (1976) investigated such a population
model and showed that it has three regimes of
dynamic solution speci"ed in its parameter space,
namely a stable equilibrium, a stable cycle and
chaos. An interesting problem is whether the
combinations of parameters that exhibit these
oscillatory dynamics are expected to occur in real
populations.
*Author to whom correspondence should be addressed.
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A natural ecosystem is by no means arbitrary,
because it is the result of a long evolutionary pro-
cess. Therefore, the distribution of demographic
parameters corresponding to real populations
can be expected by a theory of evolution. This
means that investigations into the dynamics
favored by natural selection are important to
consider the possibility that oscillatory dynamics
occur in real populations.

In this paper, we investigate the dynamics
favored by natural selection in host}parasitoid
systems. The e!ect of evolution on a single-spe-
cies model, which is the simplest population
model, has been investigated in some literature
(see Godfray et al., 1991; Metz et al., 1992; Gatto,
1993). From these studies, it is proved that we
cannot simply conclude that either a stable or an
oscillatory dynamics is favored by natural
( 2001 Academic Press
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selection if no constraint of model parameters is
assumed [but see Doebeli (1995), which con-
sidered the evolution leading the chaotic system
to the stable one]. To extend these studies, we
investigate the e!ect of evolution of a host on
a host}parasitoid system because it is one of the
simplest multi-species systems. The host}para-
sitoid model used in this paper is an extension of
Gatto's (1993) model for host dynamics.

Evolution in a two-species system has also been
examined. For instance, Hochberg & Holt (1995)
examined the evolution of refuges for hosts in
host}parasitoid systems. They used the discrete-
time model as we use, but the model is di!erent
from the one developed in this paper. Abrams
& Matsuda (1997) examined the evolution of the
prey's intrinsic growth rate and vulnerability to
the predator in a prey}predator system, whose
dynamics obey di!erential equations. These stud-
ies show that evolution has an important in#uence
on the stability of a population dynamics.

This paper is organized as follows. In Section 2,
we introduce a simple host}parasitoid system
without mutant hosts and investigate the stabil-
ity of the system. This stability analysis gives
a parameter space demarcated with dynamical
properties of the host}parasitoid model, which is
necessary to discuss the evolution of host's de-
mographic parameters. In Section 3, we intro-
duce a model describing the interaction between
two hosts and one parasitoid (2-host 1-parasitoid
model). This model gives a population- dynamics
in the case where a mutant host appears in a resi-
dent host}parasitoid system. By analyzing this
three-species model, we obtain the invasibility of
the mutant to the resident system. In Section 4, we
investigate the dynamics of the host}parasitoid
system favored by natural selection by using the
results obtained in the previous sections. The "nal
section includes discussions. Some proofs of math-
ematical properties are given in the appendices.

2. Host+Parasitoid Model

In this section, we introduce a simple host}
parasitoid model without mutant hosts and inves-
tigate its stability. The generalized host}parasitoid
model is given as follows (see Hassell, 1978):

u (n#1)"ru (n)g[u(n)] f [u (n), v(n)],

v(n#1)"bu (n) (1!f [u (n), v(n)]),
where u (n) and v(n) are the population densities
of the host and the parasitoid, respectively, in
generation n, the parameters r and b are the
intrinsic growth rate of the host and the number
of parasitoids emerging from each parasitized
host, respectively, and the functions g and f de"ne
the density dependence in the host population
growth and the fraction of hosts escaping para-
sitism, respectively. Note that in this model the
density dependence in the host population is as-
sumed to act on the hosts regardless of whether
they were parasitized, after the parasitism. That
is, g is a function of u(n) not of u(n) f [u(n), v(n)].
Other orderings of the density dependence in the
host's life cycle are possible (see e.g. Hochberg
& Holt, 1995).

Although there are a number of forms for
expressing the density dependence (see May
& Oster, 1976), we use the following function,
which is used in a Ricker model, in order to
compare the results obtained by Gatto (1993) and
the one obtained in this paper:

g[u]"exp[!ku],

where k represents sensitivity of hosts to their
density. Similarly, various functions f have been
used in ecology (see e.g. May, 1978; Kaitala et al.,
1999). In this paper, according to a Nicholson}
Bailey model we use the following function:

f [u, v]"exp[!av],

where a is the per capita parasitoid attack rate.
This fraction is given on the assumption that the
parasitoids are distributed randomly among the
available host and have a linear functional
response.

Substituting the above f and g into the general-
ized host}parasitoid model, we obtain the follow-
ing speci"c host}parasitoid model:

u(n#1)"ru(n) exp[!ku(n)] exp[!av(n)],

(1)
v(n#1)"bu(n) (1!exp[!av (n)]),

where the parameters r, k, a and b are positive
constants. This model in the absence of the para-
sitoid (v(n)"0) is reduced to the Ricker model,
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whose dynamics was investigated by May &
Oster (1976). Beddington et al. (1975) carried out
a local stability analysis of a positive equilibrium
of model (1), and showed that its dynamics indi-
cates a periodic or chaotic oscillation according
to the values of the parameters. Hereafter, we
show that model (1) exhibits a complicated dy-
namics and present the stability conditions of its
equilibria in the parameter space.

Model (1) can have three nonnegative equilib-
rium points,

E
00

"(0, 0), E
`0
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ln r
k

, 0B
and E

``
"(u*, v*),

where (u*, v*) is a positive root of the following
equations:
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This shows that two curves given by eqn (2)
intersect in the "rst quadrant of (u, v) plane if and
only if ln r/k'1/(ab) (see Fig. 1).

We now consider the local stability of the
equilibria. The local stability properties are
elucidated by linearizing equation (1) about the
equilibrium. The point E

00
is locally stable if

ln r(0. The point E
`0

is locally stable if
0(ln r(2 and 0(ln r(k/(ab). The point
E
``

is locally stable if Dj
1
D(1 and Dj

2
D(1,

where j
1

and j
2

are the roots of the following
characteristic equation:

j2!(1!ln r#abu*)j

#u*Mab!(k#ab)ku*#k ln rN"0.

Summarizing the above results leads to the fol-
lowing table.
As described in Beddington et al. (1975), we can
investigate the stability of the point E

``
by

using the Schur}Cohn criterion (see Kocic &
Ladas, 1993) and the Routh}Hurwitz criterion.
From these analyses we can obtain the region in
which the positive equilibrium of this model is
stable (see Fig. 2). This region [(S2)i in Fig. 2] is
enclosed by two curves, which can be obtained
numerically, and the line that corresponds to the
boundary of the condition for the existence of
the positive equilibrium (ln r/k'1/(ab)) (see
Appendix A).

Model (1) exhibits a complicated dynamics
when the positive equilibrium is unstable (see
Beddington et al., 1975). A bifurcation diagram of
model (1) is shown in Fig. 3. From Fig. 3 we see



FIG. 1. The null clines for system (1). Each dot represents
the equilibrium point of system (1). The curve and the
straight line represent the "rst and the second equations of
eqn (2), respectively.

FIG. 2. The k/(ab)-ln r parameter space demarcated with
the stability properties of model (1). The solid lines demar-
cate regions of the parameter space with di!erent stability
properties. Since ln r'0, the point E

00
is always unstable.

(S1)i: Model (1) does not have a positive equilibrium and the
boundary equilibrium E

`0
is stable, (S1)ii: Model (1) does

not have a positive equilibrium and the point E
`0

is unsta-
ble, (S2)i: Model (1) has a stable positive equilibrium, (S2)ii:
Model (1) has an unstable positive equilibrium. The para-
sitoid can go to extinction with the large r (see Fig. 3).

FIG. 3. The bifurcation diagram of system (1) (with re-
spect to the parameter r) when k"1, a"2 and b"1. The
dynamics of model (1) for increasing values of ln r
(ln r"0&4) shifts from a stable equilibrium to sustained
oscillations and to chaos. At the higher r, note that the
parasitoid goes to extinction.
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that when the positive equilibrium of model (1) is
unstable [the parameters belong to (S2)ii in
Fig. 2], it usually exhibits sustained oscillations
and chaos. Note that if the positive equilibrium is
unstable, the host and the parasitoid do not
always coexist with sustained oscillations or
chaos but it is possible that the parasitoid be-
comes extinct (see the lower picture of Fig. 3). In
fact, the periodic orbits on the u-axis can be
stable even if model (1) has a positive equilibrium.
This means that model (1) is not always perma-
nent, which ensures the coexistence of the host
and the parasitoid for a long time, even if it has
a positive equilibrium [see Kon & Takeuchi,
preprint-a].

3. Competition Model (2-Host 1-Parasitoid)

In this section, we introduce a 2-host 1-para-
sitoid model which describes an interaction
between the resident host}parasitoid system and
the mutant host.

We use the following 2-host 1-parasitoid model:

u
1
(n#1)"r

1
u
1
(n) exp[!k

1
(u

1
(n)

#u
2
(n))] exp[!a

1
v(n)],
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v(n#1)"
2
+
i/1

b
i
u
i
(n)(1!exp[!a

i
v(n)]), (3)

u
2
(n#1)"r

2
u
2
(n) exp[!k

2
(u

1
(n)

#u
2
(n))] exp[!a

2
v(n)],

where u
1

is a resident, u
2

is an invader and the
subscripts 1 and 2 to the symbols (k, r, a, b) indi-
cate the type of the hosts. The competitive ability
of each type of the hosts is identi"ed by the pair
(k, r, a, b). Note that the dynamics of model (3) in
the absence of the parasitoid (v(n)"0) was inves-
tigated by Gatto (1993) and the one in the ab-
sence of one host (u

2
(n)"0) was investigated by

Beddington et al. (1975) [model (1)]. Model (3),
which is an exploitative competition model, is the
special case of the model which was investigated
by Comins & Hassell (1976). They considered the
e!ect of a top predator on the stability of a sys-
tem of competing prey species and showed that
predators enhance prey species diversity.

When the resident system (u
1
, v) [described by

(1) with u"u
1
, k"k

1
, r"r

1
, a"a

1
and

b"b
1
] has a stable cycle (equilibrium or sus-

tained oscillation) of period m, the criterion for
invasibility of u

2
to this resident system is given

as follows:

ln r
2
'

+m
i/1

u
1
(i)

m
k
2
#

+m
i/1

v(i)
m

a
2
, (4)

where M(u
1
(i), v(i))N

i/1,2,m
is the periodic orbit of

period m of the resident system and satis"es the
following equation:

ln r
1
"

+m
i/1

u
1
(i)

m
k
1
#

+m
i/1

v(i)
m

a
1
, (5)

(see Appendix B and Kon & Takeuchi, preprint-
b). This criterion for invasibility is given by the
instability to the u

2
-direction of the periodic

orbit M(u
1
(i), v(i),0)N

i/1,2,m
in the phase space

(u
1
, v, u

2
). When the parameter (k

2
, r

2
, a

2
, b

2
)

satis"es eqn (4), the host u
2

can invade the
resident system (u

1
, v). The boundary of the

invasibility to the system (u
1
, v) is given by

ln r
2
"

+m
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u
1
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m
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2
#

+m
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v(i)
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a
2
. (6)
Criterion (4) is identical with the following equa-
tion when v(i)"0, (i"1, 2,2, m) (which means
the absence of the parasitoid):

ln r
2

k
2

'

ln r
1

k
1

, (7)

which is given by Gatto (1993).

4. Evolution of Host

By using the results obtained in Sections 2
and 3, we investigate the host}parasitoid system
favored by natural selection.

First, we consider the case where the resident
system (u

1
, v) does not have a positive equilib-

rium. From the discussion in Section 2, the para-
meters of this resident system belong to the
region (S1)i or (S1)ii in Fig. 2, that is, they satisfy
the condition ln r

1
/k

1
(1/(a

1
b
1
). From numer-

ical investigations (see e.g. the population density
of the parasitoid with the parameter ln r"
0&0.5 in Fig. 3), it is expected that the parasitoid
in this resident system always goes to extinction,
so that we assume that in this case the parasitoid
goes to extinction. From this assumption, the
criterion for invasibility of the host to the
resident system (u

1
, v) is given by eqn (7). Note

that it does not depend on the parameters a
i

and b
i

(i"1, 2). Criterion (7) means that the
host with a higher carrying capacity (ln r

i
/k

i
) can

invade the resident system and replace the resi-
dent host. If there is no constraint on the para-
meters, the carrying capacity of the resident host
will exceed the value 1/(a

1
b
1
) after several in-

vasions of the host. This means that the host with
no parasitoid will evolve to have a positive
(stable or unstable) equilibrium of system (1) (see
Fig. 4).

Next, we consider the case where the resident
system (u

1
, v) has a positive equilibrium. The

parameters of this resident system belong to the
region (S2)i or (S2)ii in Fig. 2 and satisfy
ln r

1
/k

1
'1/(a

1
b
1
). If the parameters are in (S2)i,

the resident system has a stable positive equilib-
rium (u*

1
, v*), so that the boundary for invasibility

to this resident system is

ln r
2
"k

2
u*
1
#a

2
v*, (8)



FIG. 4. The k
2
/(a

c
b
c
)-ln r

2
parameter space. The dashed

lines represent the boundary of the invasibility in the ab-
sence of the parasitoid [eqn (7)]. The solid arrows represent
the direction of evolution in the absence of the parasitoid
[i.e. in (S1)i and (S1)ii in Fig. 2]. The host without parasitoid
will evolve to have a positive [stable (in (S2)i) or unstable (in
(S2)ii)] equilibrium of eqn (1).
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where the point (u*
1
, v*) depends only on the

parameter set (r
1
, k

1
, a

1
, b

1
). To discuss the

evolution of the host's traits on the two-
dimensional parameter space, we consider the
following two cases. In the "rst case, we assume
that only the host's intrinsic growth rate (r) and
sensitivity to the density (k) are allowed to
evolve (i.e. "x a

1
"a

2
,a

c
and b

1
"b

2
,b

c
).

In the second case, the host's intrinsic growth
rate (r) and vulnerability to the parasitoid (a) are
allowed to evolve (i.e. "x k

1
"k

2
,k

c
and

b
1
"b

2
,b

c
).

4.1. EVOLUTION OF r AND k

Consider the "rst case of evolution, where the
boundary of the invasibility is given by eqn (8)
with a

1
"a

2
"a

c
and b

1
"b

2
"b

c
, so that it

becomes a line through the point (k
1
/(a

c
b
c
), ln r

1
)

on the k
2
/(a

c
b
c
)-ln r

2
parameter space. If the

parameters of the invader host satisfy
ln r

2
/k

2
(1/(a

c
b
c
) (that is the parameters in (S1)i

or (S1)ii), then this host cannot invade the resi-
dent system whose parameters belong to the re-
gion (S2)i. In fact, from 1/(a

c
b
c
)(u*

1
(see Fig.1),
we have

ln r
2
!k

2
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c
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ln r
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k
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1
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c
b
c
B!a

c
v*(0,

which does not satisfy the invasibility criterion
given by eqn (4). This means that if the resident
system has a stable positive equilibrium, the host
which can invade this resident system must have
the parameters belonging to (S2)i or (S2)ii. Some
boundaries of the invasibility to the resident
system with parameters in (S2)i are shown in
Fig. 5(a). Each of these boundaries does not inter-
sect on the k

2
/(a

c
b
c
)-ln r

2
parameter space (see

Appendix C). These boundaries can be treated as
contour lines which represent "tness values. The
higher the parameters above the contour line the
resident system has, the harder it is to be invaded,
that is, the resident with parameters at the tip of
the solid arrows in Fig. 5(a) is more resistant to
invasion than the one with parameters at the tail
of the arrows. Note that the solid arrows do not
represent the trajectories of evolution. From
Fig. 5(a), we see that the host}parasitoid system
whose parameters belong to the region (S2)i will
be eventually invaded by the host with para-
meters belonging to the region (S2)ii. Further-
more, there is the host}parasitoid system which
has the parameters belonging to the region (S2)ii
and is not invadable by the host with parameters
belonging to the region (S2)i. The example is
shown in Fig. 5(b). From numerical investiga-
tions, we see that system (1) has a stable periodic
solution of period 7 at A in Fig. 5(a) and the
region above the boundary of the invasibility
[the dot}dashed line in Fig. 5(a)], which is given
by eqn (4), does not contain any points of
the region (S2)i [see Fig. 5(a)]. This means that
there is the host}parasitoid system with an
unstable positive equilibrium which is not invad-
able by any host which develops a stable positive
equilibrium with the parasitoid. Note that system
(1) in the absence of the parasitoid, which is
a single-species system, can always be invaded by
the host which makes the dynamics stable (see



FIG. 5. (a) The k
2
/(a

c
b
c
)-ln r

2
parameter space. The

dashed lines represent the boundary of the invasibility to the
system composed of 1-host and 1-parasitoid which coexist at
a stable positive equilibrium. The solid arrows represent the
direction of evolution of the system. The dot}dashed line
(ln r

2
"2.29932k

2
/(a

c
b
c
)#1.91598), which passes through

the point A (k
2
/(a

c
b
c
), ln r

2
)"(1.45, 5.25), is the boundary of

the invasibility to the system with the parameter (k
2
/(a

c
b
c
),

ln r
2
)"(1.45, 5.25). The parameters a and b are "xed (a

c
"2,

b
c
"1). The dots ((k

2
/(a

c
b
c
), ln r

2
)"(1.25, 1.5), (1.0, 2.5),

(1.45, 5.25)) represent the example of the sequence of in-
vasions and a population dynamics shown in (b). (b) The
temporal #uctuation of the population densities when the
hosts with the parameter values given by the dots in (a)
invade. The dashed and the solid lines represent the host and
the parasitoid population densities, respectively. The initial
host}parasitoid system is at the stable equilibrium. Each
invader, of which the initial population densities are 0.00001,
invades after 50 generations. The "rst and the second in-
vaders appear at the 0th and 50th generations, respectively,
which are represented by arrows. The "nal system has
a stable periodic solution of period 7 (periodic points
are M(u(i), v(i))N

i/1,2,7
"M(1.175805, 0.883273), (1.265633,

0.974834), (0.874213, 1.085507), (1.50582, 0.774498), (0.773725,
1.185893), (1.459179, 0.701526), (0.993227, 1.100446)N).

FIG. 6. The k
2
-ln r

2
parameter space. The parameter

space is demarcated with the dynamical property of system
(1) with v(n)"0. If 0(ln r(2, then this single-species
system is stable. If ln r'2, then it is unstable. The interac-
tion between the resident host and the invader host in the
absence of the parasitoid is given by eqn (3) with v(n)"0, so
that the invasibility criterion of the host u

2
to the resident

system composed only of the host u
1

is given by eqn (7). Its
boundary is represented by the dashed line [eqn (7) with
equality]. It is a straight line which passes through the origin
and the point (k

1
, ln r

1
) irrespective of the resident dynam-

ics. Hence, we see that there always exists a host which
makes the resident system stable whenever it is unstable
(ln r

1
'2).
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Gatto, 1993 and Fig. 6). This is not the case for
system (1) with the parasitoid. Therefore the sys-
tem composed of 1-host and 1-parasitoid which
coexist at a stable positive equilibrium will not be
favored by natural selection without the con-
straint on the parameters.

Now, we assume that there is a trade-o! be-
tween parameters (r and k). Gatto (1993) assumed
that along the boundary of the feasibility set of
parameters any invader that entails an increase in
the intrinsic growth rate r also entails an increase
in the self-regulation parameter k. According to
this assumption, we consider the feasibility set
shown in Fig. 7. Considering the trade-o!, we see
that the parameters favored by natural selection
(i.e. the parameters for an optimal invader) are
given by the point of tangency between the
boundary of the feasibility set and the boundary
of the invasibility. Hence, we see that both
the stable [Fig. 8(a) and (b)] and the unstable
[Fig. 8(c) and (d)] host}parasitoid systems can be
favored by natural selection. Some parameter
sets favored by natural selection are calculated
for the speci"c feasibility sets in Fig. 8.



FIG. 7. The feasibility set of the parameters k and ln r. The
host can have the parameters in the hatched region. Along
the boundary of the feasibility set of the parameters any
invader that entails an increase in the intrinsic growth rate
(r) also entails an increase in the sensitivity to the density (k).
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Hereafter, let us compare the stability of host's
population dynamics selected in the system with-
out the parasitoid and in the one with the para-
sitoid when the feasibility set of the parameters is
imposed. In the absence of the parasitoid the
boundary of the invasibility is given by the fol-
lowing equation on the k

2
!ln r

2
parameter

space:

ln r
2
"

ln r
1

k
1

k
2
. (9)

Then the point (k
op

, ln r
op

) which is favored by
natural selection is a tangent point between
eqn (9) and the boundary of the feasibility set (see
Fig. 9). The slope of the boundary of the feasibil-
ity set at the point (k

op
, ln r

op
) is

ln r
op

k
op

. (10)

Next assume that the resident host which has
the parameter (k

op
, r

op
, a

c
, b

c
) coexists with the

parasitoid with a stable m-cycle M(u
op

(i),
v
op

(i))N
i/1,2,m

. The boundary of the invasibility
of the host to this resident system is given by the
following equation [see eqn (6)]:

ln r
2
"

+m
i/1

u
op

(i)
m

k
2
#

+m
i/1

v
op

(i)
m

a
c
, (11)
where M(u
op

(i), v
op

(i))N
i/1,2,m

satis"es the follow-
ing equation [see eqn (5)]:

ln r
op
"

+m
i/1

u
op

(i)
m

k
op
#

+m
i/1

v
op

(i)
m

a
c
. (12)

The slope of the boundary of the above invasibil-
ity at the point (k

op
, r

op
) is given as follows and

satis"es

+m
i/1

u
op

(i)
m

(

ln r
op

k
op

,

where the last inequality is obtained by eqn (12).
Hence, we see that the boundary of the invasibil-
ity of a host in the host}parasitoid system is not
a tangent to the boundary of the feasibility set
and intersects at (k

op
, ln r

op
). This result shows

that there is a host with (k@
op

, r@
op

, a
c
, b

c
) satisfying

the inequalities k@
op
'k

op
and r@

op
'r

op
which

can invade the resident host}parasitoid system
with (k

op
, r

op
, a

c
, b

c
). Therefore, the parameter

favored by natural selection with the parasitoid,
(k@

op
, r@

op
, a

c
, b

c
), is given by the point of tangency

between the boundary of the invasibility (11) and
the feasibility set (see Fig. 9). The stability of the
system with the parameter (k@

op
, r@

op
, a

c
, b

c
) de-

pends on the speci"c shape of the feasibility set.
We cannot generally decide with what kind of
dynamics the host and parasitoid coexist, but we
see that the host with the parasitoid will evolve to
have a higher r than the one without the para-
sitoid and the higher r represents an unstable
dynamics in the system without the parasitoid.

4.2. EVOLUTION OF r AND a

Consider the second case of evolution. In this
case, the boundary of the invasibility is given by
eqn (8) with k

1
"k

2
"k

c
and b

1
"b

2
"b

c
so

that it becomes a curve through the point
(k

c
/(a

1
b
c
), ln r

1
) on the k

c
/(a

2
b
c
)-ln r

2
parameter

space. Some boundaries of the invasibility to the
resident system with parameters in (S2)i are
shown in Fig. 10(a). These boundaries can inter-
sect each other, so that depending on the way of
their intersection the coexistence of the three spe-
cies in system (3) with the parameters in (S2)i is
possible even if the parameters satisfy k

1
"k

2
and b

1
"b

2
(see Fig. 11). Although this case of



FIG. 8. The examples of the calculations of the optimal parameters for the speci"c feasibility set of the parameters. We
chose a

c
"2 and b

c
"1. The optimal parameters (k

op
, ln r

op
) (d), which are approximately (1.74, 1.66) in (a) and (1.4, 2.6) in (c),

are calculated by numerical investigations. The dashed lines, which are ln r
2
"!a

c
b
c
/k

2
#2.8 in (a) and

ln r
2
"!a

c
b
c
/k

2
#3.9 in (c), represent the boundary of the feasibility set of the parameters. The optimal parameters are

calculated as follows. In the feasibility set of the parameters, set the initial parameters of the resident host and randomly
choose the invader host whose parameters are close to the resident host's ones. If the invader's parameters satisfy the
invasibility criterion and are in the feasibility set of the parameters, then they are replaced with those of the resident host and
are plotted in the parameter space. If not, choose the invader's parameter again. Repeating these procedure gives the pathway
of the evolution. The three pathways of the evolution are represented by the solid lines in (a) and (c). Each of these converges to
the optimal parameter (d). The host}parasitoid dynamics with the optimal parameters obtained in (a) and (c) are shown in (b)
and (d), respectively. The dashed and solid lines represent the densities of the host and the parasitoid, respectively. The host
and the parasitoid in (b) coexist at a stable positive equilibrium, and the ones in (d) coexist with a sustained oscillation.
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evolution has such a property in comparison
with the previous one, there is the following
qualitatively same property. The higher the para-
meters above the contour line the resident system
has, the harder it is to be invaded, that is, the
resident with parameters at the tip of the solid
arrows in Fig. 10(a) is more resistant to invasion
than the one with parameters at the tail of
the arrows. From Fig. 10(a), we see that the
host}parasitoid system whose parameters belong
to the region (S2)i will be eventually invaded by
the host with parameters belonging to the region
(S1)i, (S1)ii or (S2)ii. However, remembering the
fact that the host with the parameters in (S1)i or
(S1)ii evolves to have the parameters in (S2)i or
(S2)ii, we can conclude that the host}parasitoid
system eventually becomes unstable without the
trade-o! of the parameters. An example of the
invasions is shown in Fig. 10(b).

Now we assume that there is a trade-o! be-
tween parameters (Fig. 12). We assumed that
along the boundary of the feasibility set of para-
meters any invader that entails an increase in the
"nite rate of increase (r) also entails an increase in
the vulnerability to the parasitoid (a). The para-
meters favored by natural selection are given by
the point of tangency between the boundary
of the feasibility set and the boundary of the



FIG. 9. The k
2
-ln r

2
parameter space. The dot}dashed

line represents the boundary of the invasibility in the ab-
sence of the parasitoid. The dashed lines represent the
boundary of the invasibility to the system composed of
1-host and 1-parasitoid which coexist at a stable cycle. The
(k

op
, ln r

op
) is the point which is favored by natural selection

in the absence of a parasitoid. Note that the boundary of the
invasibility to the system with the parasitoid intersects the
boundary of the feasibility set when the former boundary
passes through the point (k

op
, ln r

op
). The resident

host}parasitoid system with the parameters (k
op

, ln r
op

) is
invadable by the host and the (k@

op
, ln r@

op
) is the point which

is favored by natural selection with the parasitoid.

FIG. 10. (a) The k
c
/(a

2
b
c
)-ln r

2
parameter space. The

dashed lines represent the boundary of the invasibility to the
system composed of 1-host and 1-parasitoid which coexist at
a stable positive equilibrium. The solid arrows represent the
direction of the evolution of the system composed of 1-host
and 1-parasitoid which coexist at a stable positive equilib-
rium. The parameters k and b are "xed (k

c
"0.5, b

c
"1).

The dots ((a, ln r)"(0.4, 1.5), (0.5, 2.5), (0.33, 5.5)) represent
the example of the sequence of invasions and a population
dynamics shown in (b). (b) The temporal #uctuation of the
population densities when the hosts with the parameter
values of the dots in (a) invade. The initial host}parasitoid
system is at the stable equilibrium. Each invader, whose
initial population densities are 0.00001, invades after 50
generations. The "rst and the second invaders appear at the
0th and 50th generations, respectively, which are represent-
ed by arrows. In the "nal system, the parasitoid goes to
extinction and the host has a chaotic oscillation.
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invasibility. Hence, we see that according to the
shape of the parameter's feasibility set on the
above assumption, both the stable and the unsta-
ble host}parasitoid systems can be favored by
natural selection. Some parameter sets favored
by natural selection are calculated for the speci"c
feasibility sets in Fig. 13.

5. Discussion

In this paper, we considered the evolution of
host}parasitoid systems and investigated their
dynamics which resulted from evolution. We as-
sumed that only the host is allowed to evolve. We
considered two cases of the host's evolution. In
the "rst case, we allowed the host's intrinsic
growth rate (r) and sensitivity to the density (k) to
evolve. In the second case, the host's intrinsic
growth rate (r) and vulnerability to the parasitoid
(a) are allowed to evolve. Under these assump-
tions, we obtained the host}parasitoid system
favored by natural selection by using the invasi-
bility criterion of the host to the resident
host}parasitoid system without considering
the explicit evolutionary dynamics. As a result,
the evolution of the host tends to make the
host}parasitoid system unstable. This tendency
is di!erent from the one in the single-species
system.

The tendency of the host's evolution in the
host}parasitoid system to make the host dynam-
ics isolated from the parasitoid unstable in the
"rst case of the evolution is interpreted as follows.



FIG. 11. An example of coexistence of two hosts and
a parasitoid. We chose k

c
"0.5, b

c
"1 and two hosts which

are characterized by (a
1
, ln r

1
)"(1

3
, 1.5) and (0.5, 2.2), respec-

tively. Each of these hosts coexists with the parasitoid at
a stable equilibrium. The boundaries of the invasibility to
the host}parasitoid system with each of these hosts are
represented by the solid and the dashed curves, respectively,
in (a). From the way of their intersection, we see that these
hosts can mutually invade with the help of the parasitoid.
The temporal #uctuation of these two hosts' and the para-
sitoid's population densities is shown in (b). The population
dynamics obeys eqn (3) with (k

1
, ln r

1
, a

1
, b

1
)"(0.5, 1.5, 1

3
, 1)

and (k
2
, ln r

2
, a

2
, b

2
)"(0.5, 2.2, 0.5, 1). The solid line

represents the parasitoid's population density. The dashed
and dot}dashed lines represent the population densities of
the hosts characterized by the dot and the circle in (a).

FIG. 12. The feasibility set of the parameters a and ln r.
The host can have the parameters in the hatched region.
Along the boundary of the feasibility set of the parameters
any invader that entails an increase in the intrinsic growth
rate (r) also entails an increase in the vulnerability to the
parasitoid (a).
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In general, the existence of the parasitoid depres-
ses the density of the hosts (Beddington et al.,
1975), so that the competition between the hosts
is relaxed (Comins & Hassell, 1976). Because of
this relaxation of the host's competition, the
change of the intrinsic growth rate (r) is relatively
important when the host evolves in host}para-
sitoid systems. This implies the increase of the
intrinsic growth rate (r). Hence, it means the
instability of the host population dynamics iso-
lated from the parasitoid.
There have been some studies about evolution
of two-species systems (see Hochberg & Holt,
1995; Abrams & Matsuda, 1997). These studies
showed that the evolution a!ects the stability of
the population dynamics as our study did. In
Hochberg & Holt (1995) and Abrams & Matsuda
(1997), the speci"c models for the traits dynamics
were employed. In this paper, we employed the
invasibility criterion of the mutant species to the
resident system, instead of assuming the speci"c
models for traits dynamics, so that this paper
implicitly assumes that the time scale of evolution
is su$ciently larger than the one of population
dynamics. Therefore, the evolution considered in
this paper corresponds to the evolution with the
su$ciently slow traits dynamics. Abrams &
Matsuda (1997) considered the evolution of the
prey's intrinsic growth rate and vulnerability to
the predator in prey}predator systems. In their
model, whether the evolution of the traits makes
the prey}predator system unstable depends cru-
cially on the assumption about the functional
response of the predator. That is, if the functional
response of the predator is linear, then the insta-
bility is not resulted from the evolution of the
prey, but if not, then the instability can occur.



FIG. 13. The example of the calculations of the optimal parameters for the speci"c feasibility set of the parameters. We
chose k

c
"0.5 and b

c
"1. The optimal parameters (a

op
, ln r

op
) (d), which are approximately (0.45, 2.05) in (a) and (0.66, 2.98) in

(c), are calculated by numerical investigations. The dashed lines, which are ln r
2
"0.1/(k

c
/(a

2
b
c
)!1.5)#2.3

in (a) and ln r
2
"0.1/(k

c
/(a

2
b
c
)!1)#3.4 in (c), represent the boundary of the feasibility set of the parameters. The solid lines

represent the pathway of the evolution calculated with a procedure similar to the one in Fig. 8. Each of these converges to the
optimal parameter. The host}parasitoid dynamics with the optimal parameters obtained in (a) and (c) are shown in (b) and
(d), respectively. The dashed and the solid lines represent the densities of the host and the parasitoid, respectively. The host
and the parasitoid in (b) coexist at a stable equilibrium, and the ones in (d) coexist with sustained oscillation.

298 R. KON AND Y. TAKEUCHI
However, although the functional response of
the parasitoid in our model is linear, it can be
destabilized by the evolution of the host. One of
the reasons for this di!erence is the property of
the discrete-time models that easily have unstable
dynamics. Hence, it is expected that population
dynamics with non-overlapping generations
easily have an unstable dynamics even if traits
dynamics are included.

In this paper, we employed the Ricker model as
a host population dynamics. But there are many
other models which describe a singe-population
dynamics. According to Bellows (1981), the fol-
lowing model has a particularly #exible form to
describe the density dependence:

g[u]"
1

1#(au)b
,

where a'0 de"nes sensitivity to the density and
b'1 determines the types of competition: bK1,
contest competition; b<1, scramble competi-
tion. To assess the generality of our results, we
also employed the above density dependence. As
a result, if the competition in the host population
is scramble, our results hold, that is the stable
host}parasitoid system is eventually invaded by
the host which develops unstable dynamics with
the parasitoid. But if the competition in the host
population is contest, our results do not hold.
This di!erence comes from the property of the
Ricker model which does not describe the contest
competition. Therefore, it seems that the main
results, that is the stable host}parasitoid system
is eventually invaded by the host which develops
unstable dynamics with the parasitoid, does not
depend on the forms of models as long as the host
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has a scramble competition. The host}parasitoid
model employed in this paper is a simple one, so
that it is also expected that if the more realistic
models (see e.g. Hochberg & Holt, 1995; Kaitala
et al., 1999) are employed, other results can occur.
It is a future problem.
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tion, Science and Culture, Japan under Grant
09640256.
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APPENDIX A

Using the Schur}Cohn criterion and the
Routh}Hurwitz criterion, we can obtain the
following condition for stability of the point
E
``

:

ln r#k ln ru*!k(ab#k)u*2'0,

1!(ab#k ln r)u*#k(ab#k)u*2'0, (A.1)

2!ln r#(2ab#k ln r)u*!k(ab#k)u*2'0.

We show that the "rst inequality of eqn (A.1)
holds as long as the positive equilibrium exists
(ln r/k'1/(ab)). We de"ne h(x) as follows:

h(x)"1!2ax exp[!ax]!(exp[!ax])2.

We see that h(x)'0 for x'0 because the func-
tion h(x) has the following properties:

h(0)"0,

d
dx

h(x)"2a exp[!ax](!1#ax#exp[!ax])

'0 for x'0.

Using the above result, we see that the follow-
ing inequality holds:

x
b(1!exp[!ax])

'

1
2b Ax#

2
aB for x'0.

(A.2)

In fact,

lim
x?0

C
x

b(1!exp[!ax])
!

1
2b Ax#

2
aBD"0

d
dx A

x
b(1!exp[!ax])

!

1
2b Ax#

2
aBB

"

1
2b(1!exp[!ax])2

h(x)'0 for x'0.
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Using eqn (A.2) and (2), we see that the follow-
ing inequality holds:

v*
b(1!exp[!av*])

'

1
2b Av*#

2
aB,

u*'
1
2b A

ln r!ku*
a

#

2
aB,

u*'
ln r#2
k#2ab

. (A.3)

We see that the following inequality holds:

1
b Ax#

1
aB'

x
b(1!exp[!ax])

for x'0,

(A.4)

because

lim
x?0

C
1
bAx#

1
aB!

x
b(1!exp[!ax])D"0,

d
dx C

1
b Ax#

1
aB!

x
b(1!exp[!ax])D

"

exp[!ax]
b(1!exp[!ax])2

(!1#ax#exp[!ax])

'0 for x'0.

Using eqns (A.4) and (2), we see that the following
inequality holds:

u*(
ln r#1
k#ab

. (A.5)

We de"ne q(x) as follows:

q(x)"ln r#k ln rx!k(ab#k)x2.

The function q(x) has a maximum value at
x"ln r/M2(ab#k)N, which has the following
A
i
"A

r
1
(1!k

1
u
1
(i)) exp[!k

1
u
1
(i)] exp[!a

1
v(i)] !a

1
r
1
u
1
(i) exp[!k

1
u(i)] exp[!a

1
v(i)]

b
1
(1!exp[!a

1
v(i)]) a

1
b
1
u
1
(i) exp[!a

1
v(i)] B,

C
i
"r

2
exp[!k

2
u
1
(i)] exp[!a

2
v(i)].
property:

ln r
2(ab#k)

(

ln r#2
k#2ab

. (A.6)

Using eqns (A.3), (A.5) and (A.6), we see that the
following inequalities hold:

ln r
2(ab#k)

(

ln r#2
k#2ab

(u*(
ln r#1
k#ab

.

Then,

q(u*)'qA
ln r#1
k#abB

"

abk
k#ab A

ln r
k

!

1
abB'0 for

ln r
k
'

1
ab

,

which shows that the "rst inequality of eqn (A.1)
holds true if E

``
exists.

APPENDIX B

We obtain the criterion for invasibility, eqn (4),
when the resident system corresponds to a stable
cycle (equilibrium or periodic oscillation) of
period m M(u

1
(i), v(i))N

i/1,2,m
of system (1). Then

p(i)"(u
1
(i), v(i), 0), (i"1, 2,2, m) is the periodic

orbit of period m of system (3). To derive the
criterion for invasibility, we investigate the stabil-
ity of the periodic orbit. The Jacobian matrix J of
eqn (3) at the periodic orbit is given by

J"A
m
<
i/1

A
i

B

0
m
<
i/1

C
iB ,

where
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B is a suitable 2]1 matrix and 0 is a 1]2 zero
matrix. Then the stability of the periodic orbit
Mp(i)N

i/1,2,2, m
depends only on the value of

<m
i/1

C
i
, because the resident community corres-

ponds to a stable cycle (the absolute value of
eigenvalues of the matrix <m

i/1
A

i
is smaller than

unity). If

m
<
i/1

r
2

exp[!a
2
v(i)] exp[!k

2
u
1
(i)]'1,

that is, if

m
+
i/1

(ln r
2
!a

2
v(i)!k

2
u
1
(i))'0,

the periodic orbit is unstable with respect to
u
2
-direction and the community (u

1
, v) is invad-

able by the invader u
2
. Note that the above is

equivalent to eqn (4).
We obtain the necessary condition (5) that

system (1) has a periodic orbit of period m. Let
M(u(i), v(i))N

i/1,2,2,m
be the periodic orbit. We

simply write k
1
, r

1
and a

1
as k, r and a, respec-

tively. Then we can obtain the following equa-
tions by using the "rst equation of eqn (1):

u(2)"ru(1) exp[!av(1)] exp[!ku(1)],

u(3)"ru(2) exp[!av(2)] exp[!ku(2)]

"rMru(1) exp[!av(1)] exp[!ku(1)]N

]exp[!av(2)] exp[!ku(2)]

"r2u(1)
2
<
i/1

exp[!av(i)] exp[!ku(i)],

F

u(m#1)"rmu(1)
m
<
i/1

exp[!av(i)] exp[!ku(i)].

Using u(m#1)"u(1) in the above, we obtain
eqn (5).

APPENDIX C

We show that the boundaries of the invasibility
to host}parasitoid systems which have a stable
positive equilibrium do not intersect in k!ln r
parameter space if a and b are "xed.

Let (k
1
, r

1
, a

c
, b

c
) and (k

2
, r

2
, a

c
, b

c
) be para-

meters which belong to the region (S2)i in Fig. 2.
System (1) with u"u

1
, k"k

1
, r"r

1
, a"a

c
,

and b"b
c

and the one with u"u
2
, k"k

2
,

r"r
2
, a"a

c
, and b"b

c
have a positive equilib-

rium (see Section 2). We denote these equilibria
as (u*

1
, v*

1
) and (u*

2
, v*

2
), respectively. The values of

these equilibria are the roots of the following
equations, respectively [see eqn (2)]:

u*
1
"G

v*
1

b
c
(1!exp [!a

c
v*
1
])

,

ln r
1
!a

c
v*
1

k
1

,

(C.1)

u*
2
"G

v*
2

b
c
(1!exp[!a

c
v*
2
])

,

ln r
2
!a

c
v*
2

k
2

.

(C.2)

Using eqn (6), the boundaries of the invasibility of
a host to the community (u

1
, v

1
) and (u

2
, v

2
) are

given by the following equations, respectively:

ln r"G
v*
1
a
c
#u*

1
k,

v*
2
a
c
#u*

2
k.

(C.3)

Now we assume that the community (u
1
, v

1
) is

invadable by the host u
2
. Then the following

inequality holds [see eqn (4)]:

ln r
2

k
2

'v*
1

a
c

k
2

#u*
1
.

Using the above inequality, the "rst equation of
eqn (C.1) and the two equations of eqn (C.2), we
obtain the following inequality:

a
c

k
2

v*
2
#

v*
2

b
c
(1!exp[!a

c
v*
2
])

'

a
c

k
2

v*
1
#

v*
1

b
c
(1!exp[!a

c
v*
1
])

.
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Since function (a
c
/k

2
)x#x/Mb

c
(1!exp[!a

c
x])N

is monotone increasing with respect to x'0, we
see that v*

2
'v*

1
. Using this inequality and the

monotonicity of the function x/Mb
c
(1!

exp[!a
c
x])N we obtain the following inequality:

v*
2

b
c
(1!exp[!a

c
v*
2
])
'

v*
1

b
c
(1!exp[!a

c
v*
1
])

.

Finally, we see u*
2
'u*

1
from the "rst equations of

eqns (C.1) and (C.2). Because u*
2
'u*

1
and v*

2
'v*

1
,

we see that the boundaries eqn (C.3) do not
intersect. In fact,

(v*
2
a
c
#u*

2
k)!(v*

1
a
c
#u*

1
k)

"a
c
(v*

2
!v*

1
)#k(u*

2
!u*

1
)'0.
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