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I.

Mathematical modelling of the generation and onset of spatial patterns in the early stages
of embryonic development

— reaction-diffusion equations, chemotaxis equations, mechanochemical force balance
equations.

S. F. Gilbert (1988): the communication between different groups of cell and tissue types
plays a crucial role during morphogenesis.

Most of the models are concerned only with very specific tissues;
little attention to modelling tissue interaction.

Focus: two aspects of tissue interaction
– two different models for vertebrate skin pattern formulation:

(i) model by Cruywagen–Murray (1992) [3, 10]:
Patterns and structure observed in animals develop from a homogeneous mass of cells

seen in the early embryo. This process - morphogenesis - consists of a complex interaction
of chemical, mechanical, and electrical phenomena.

Uniform skin tissue can only be excited into spatial structure in the presence of tissue
interaction;

(ii) model by Shaw–Murray (1990) [12]:
the interaction mechanism is not crucial for simple pattern formulation, however it can

excite the skin tissue into producing far more complex patterns normally exhibited by such
models.

II. Tissue interaction

Vertebrate skin is composed two layers: the epidermis and the dermis.

epidermis – a sheet of tightly packed epithelial cells exhibiting viscoelastic properties;

dermis – mesenchymal cells which can move in the extracellular matrix, an array of fibres
and collagen.

These layers are separated by a thin sheet of tissue called basal lamina.

Pattern formation – almost simultaneously in both layers and in both dermis and
epidermis due to the active communication between the layers.

Theoretical scenario of the dermal-epidermal communication based upon the experimental
results due to Chuong–Edelman:

The actual factors (chemicals) are produced by the cells in the respective layers
and diffuse across the basal lamina, which are mechanical signals with active stresses

→ a major effect on cell behavior;

electrical signals.



III (i). Full tissue interaction system

The epidermis is modelled as a viscoelastic sheet by a mechanochemical system and
by the conservation of the epithelial cell;

The mechanochemical system = a force balance equation describing the passive vis-
coelastic stresses present in the tissue and a traction term responsible for the active
tissue stresses which depends on a chemical signal received from the dermis.

The dermis is modelled as a cell chemotaxis since cells in the dermal layer are more
loosely arranged and are motile and by the conservation of the dermal cell;

The chemo-attractant is induced by the signal received from the epidermal layer.

Epidermal cell equations:

N = N(x, t) = the epithelial (cell) density at (x, t),

u = u(x, t) = displacement in the epithelial layer at (x, t),

ê = ê(x, t) = epidermal concentration of a signal morphogen, produced in the epidermis,
at (x, t),

ŝ = ŝ(x, t) = epidermal concentration of a signal morphogen, received from the dermis,
at (x, t).

∇ ·
[

E

1 + ν

(
E − β1∇2E + ν ′(trE − β2∇2trE)I

)
+

∂

∂t
(µ1E + µ2(trE)I) + τI

]
= %u, [mechanochemical force balance] (0.1)

∂N

∂t
= −∇ ·

(
N

∂u

∂t

)
, [epithelial cell conservation] (0.2)

where

E = E(ŝ) = the passive elastic modulus,

ν = ν(ŝ) = Poisson’s ratio, ν ′ = ν/(1 − 2ν),

(µ1, µ2) = (µ1, µ2)(ŝ) = the first (shear), second (bulk) viscosities,

% = the strength of the attachments of the epidermis to the surrounding tissue,

β1, β2 = the strength of the effect of long-range elastic forces,

E = (∇u + (∇u)T)/2 = strain tensor,

τ = τ(ŝ) = the traction, e.g., τ(ŝ) = k1ŝ
2/(1 + k2ŝ

2).



Epidermal morphogen equations:

∂ê

∂t
= D̂e∇2ê + f(N, ŝ) − Pe(ê − e) − γ̂ê, (0.3)

∂ŝ

∂t
= D̂s∇2ŝ + Ps(s − ŝ) − ν̂Nŝ, (0.4)

where

D̂e = the epidermal diffusion coefficient,

f = production of ŝ by N ,

Pe = the rate of diffusion across the basal lamina,

γ̂ = a measure of degradation rate.

Dermal chemotaxis equation:

n = n(x, t) = density of mesenchymal cells at (x, t),

s = s(x, t) = dermal concentration of a signal morphogen, produced in the dermis,
at (x, t),

e = e(x, t) = dermal concentration of a signal morphogen, received from the epidermis,
at (x, t).

∂n

∂t
= ∇ · (D(e)∇n) −∇ · (nα(e)∇e) + rn(n̄ − n), (0.5)

where

n̄ = the normal uniform cell density,

last term in RHS represents mitosis.

Dermal morphogen equations:

∂e

∂t
= De∇2e + Pe(ê − e) − γne, (0.6)

∂s

∂t
= Ds∇2s + g(n, e) − Ps(s − ŝ) − νs. (0.7)



III (ii). Complex pattern formation and tissue interaction

the tissue interaction model + two well-known pattern generating mechanism.

The epithelial pattern formation model – Schnakenberg reaction-diffusion system.

Assumption: Hypothetical chemicals provide positional information for epithelial morpho-
genesis due to Wolpert.

Mechanochemical model for dermis:

a force balance equation for forces within the extracellular matrix
+ conservation equations for dermal density & for the extracellular matrix density.

Schnakenberg reaction-diffusion system:

∂V

∂t
= A − V + V 2W + DV ∇2v − δ∇ · u, (0.8)

∂W

∂t
= B − V 2W + DW∇2W, (0.9)

where

V, W = the concentration of the chemicals,

A, B = production and kinetics of the chemicals,

last term in RHS of (0.8) = the dermal to epidermal tissue interaction,

δ = the strength of the coupling betweens the layers.

Conservations of cell and matrix:

∂n

∂t
+ ∇ ·

(
n

∂u

∂t

)
= 0, (0.10)

∂%

∂t
+ ∇ ·

(
%
∂u

∂t

)
= 0, (0.11)

where

n = the dermal cell density,

% = the extracellular matrix density,

u = the displacement of matrix.



Matrix force balance equation:

∇ ·
[

E

1 + ν
(E + ν ′(trE)I) +

∂

∂t
(µ1E + µ2(trE)I)

+τ(n)n
(
% + β∇2%

) (
1 + γ(V − V̄ )

)
I
]

= s%u, (0.12)

where

τ = τ(n) = the traction per unit length per cell, e.g., τ(n) = k1/(1 + k2n
2),

k1 = the strength of the active traction,

k2 = the cell-cell contact inhibition in high cell populations,

β = the strength of long-range traction,

V̄ = the uniform steady state of the chemical V ,

γ = the strength of the dermal to epidermal interaction.

Here we assume that the cell-matrix composite is attached to some external substratum
(for example the sub-dermal layer in the chick skin) by tethers that may be modelled by
a linear spring. Such a body force may be given by su with s being the positive spring
constant which reflects the attachment of ECM to the surrounding tissue.

Note that (ii) contains the patterned solutions in the absence of tissue interaction unlike the
model (i). However, adding the effect of tissue interaction dramatically changes the nature
of these patterned solutions ([10]).



III (iii). Mechanical models for biological pattern formation ([13])

Morphogenetic process of skin primordia development, where mesenchymal cells and cross-
linked collagen fibers (extracellular matrix) play important roles. In the development of
spatial pattern, mesenchymal cells move through the fibrous component of extracellular
matrix. These cells posess finger-like filopodia which enable them to grab onto adhesive
sites and move within and recognize the extracellular matrix. The coordinated movement
of mesenchymal cells and tissue deformation give rise to the heterogeneous distributions of
cell density which forms a spatial pattern in the developing skin.

cell conservation equation:

∂n

∂t
= ∇ ·

(
−D∇2n + nu̇ + αn∇%

)
+ M(n), (0.13)

where

u = displacement vector of extracellular matrix (ECM) at (x, t),

n = mesenchymal cell density at (x, t),

% = ECM density at (x, t),

M(n) = cell mitosis, e.g., M(n) = rn(n̄ − n),

α = haptotaxis coefficient,

n̄ = homogeneous cell density,

the overdot represents the total derivative with respect to t.

matrix conservation equation:

∂%

∂t
= −∇ · (%u̇) + S(n, %,u), (0.14)

where

S(n, %,u) = the secretion/degradation of ECM from/by cells,
e.g., S(n, %,u) = γn%(%̄ − %), %̄ = the homogeneous ECM density.

cell-matrix mechanical interaction equation:

∇ ·
[

E

1 + ν
(E + ν ′(trEtrE)I) +

∂

∂t
(µ1E + µ2(trE)I) + τn(% + β∇2%)I

]
= %f , (0.15)

where

f = body force such as a resistive force arising from the fibrous tendrils which attach to
the subdermal layer, e.g., f = su, s = an elastic constant.



Viscoelasticity

Hooke (1660) – Hooke’s law, Newton (1687) – Principia,

Young (1807) – Young’s modulus,

Navier (1821, 1826) – elasticity, viscous hydrodynamics,

Cauchy (1828) – Cauchy’s tensor, Poisson (1829) – Poisson ratio,

Stokes (1845, 1847) – 体積弾性率, 剛性率, viscous hydrodynamics,

Maxwell (1868) – stress relaxation theory, Saint Venant (1870) – ideal plasticity,

Kelvin (1875) – viscoelasticity, Boltzmann (1876) – viscoelasticity,

Reynolds (1885) – dilatancy, Voigt (1890) – viscoelasticity = Kelvin’s,

Bingham (1919) – Bingham’s plasticity, rheology.

Jeffreys (1929): M – extra stress tensor, D(w) – rate of strain tensor

λ1
DM
Dt

+ M = 2η

[
D(w) + λ2

D

Dt
D(w)

]
,

where

DM
Dt

=
dM
dt

−WM + MW − a(DM + MD), W =
1

2
(∇w −∇wT), a = const.

λ2 = 0 ⇒ Maxwell model; λ1 = 0 ⇒ Kelvin-Voigt model.

Integral form: Boltzmann model, generalization of Boltzmann model

M =

∫ ∞

0

G(t − τ)D(w) dτ, M = 2µD(w) +

∫ ∞

0

G(t − τ)D(w) dτ.

Viscoelastic body: P = P(vis) + P(el),

P(vis) = −pI + 2µD(v) + µ′tr(D(v))I, P(el) = 2λD(u) + λ′tr(D(u))I,

thermo-elastic ⇒

P(el) = −βθI + 2λD(u) + λ′tr(D(u))I, β =

(
λ′ +

2

3
λ

)
α,

(α = coefficient of expansion).



Mathematical analysis of 1D model system

for complex skin patterns

Atusi Tani
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1 Introduction

A central issue in developmental biology is the formation of spatial pattern and form in
the early embryo. Various models and mechanisms have been proposed to describe the
pattern formation process, such as those based on the reaction-diffusion theory of Turing
[25] involving chemicals called morphogens.

An alternative approach to morphogenetic pattern formation is based on the mechano-
chemical interaction of mesenchymal cells with the extracellular matrix (ECM) – a complex
of cross-linked collagen fibres and glycosaminoglycans – on which they move. This approach
to pattern formation has been applied to several widely studied phenomena in developmental
biology, such as the formation of feather germ primordia in chicks and cartilage formation
in chick and amphibian limbs.

However, to date, little attention has been given to modelling tissue interaction between
different groups of cells and tissue types. Here, we shall consider a tissue interaction model
because it has far reaching consequences for explaining morphogenetic structure formation
([22], [16]). Thus we shall couple the above two well-known pattern generating mechanisms
and discuss it mathematically.

2 Mathematical Issues

2.1 The model equations for Pattern Formation

Vertebrate skin is composed of two layers, the epidermis and the dermis. The epidermis
consists of a sheet of tightly packed epithelial cells which exhibits viscoelastic properties.
The dermis, on the other hand, is made up of mesenchymal cells which can move in ECM
- essentially an array of fibers and collagen. These layers are separated by a thin sheet of
tissue called the basal lamina.

A variety of model mechanisms have been proposed for explaining pattern formation
in either of these two layers. However, not only does pattern formation appear to occur
almost simultaneously in both layers, biological evidence indicates that there is, in fact,
active communication between the layers and that, furthermore, pattern formation can only
occur in the presence of both dermis and epidermis.

We focus on a mechanochemical model of the dermis proposed by Shaw and Murray [24]
(see also [14, 15, 17, 18, 19, 20, 21, 22, 27]). It consists of three equations: two conservation



equations for mesenchymal cell density n(x, t) and ECM density ρ(x, t) at the position x
and the time t, and a force balance equation for the mechanical interaction of cells with the
matrix which determines the displacement vector u(x, t) of a material point of ECM located
at position x. Each governing equation is as follows.

The rate of change in cell density is equal to cell flux and cell mitosis:

∂n

∂t
= −∇ · J + M(n), (2.1)

where J is the cell flux assumed here, for simplicity, to consist of three terms,

J = Jdiffusion + Jhaptotaxis + Jconvection.

Here Jdiffusion = −dn∇n is due to diffusion of a random cell motion, Jhaptotaxis = αn∇% is
due to haptotaxis representing cells moving up a gradient of adhesive sites, and Jconvection =
nu̇ ≡ nv is due to convection representing cells passively carried by other moving cells or
convected with the deforming ECM (the overdot represents the total derivative with respect
to t). M(n) represents cell mitosis. The parameters dn and α are the diffusion coefficient
and the haptotaxis coefficient, respectively. With these equation (2.1) can be written as

∂n

∂t
= −∇ · [−dn∇n + αn∇% + nv] + M(n). (2.2)

The rate of change of ECM density which is equal to the convective flux caused by forces
exerted by cells:

∂%

∂t
= −∇ · (%v) + S(n, %,u), (2.3)

where S(n, %,u) is the secretion/degradation of ECM from/by cells.

By basing on the experimental results examined the role of tissue interaction during
chick feather germ morphogenesis by Chuong and Edelman [1, 2] and Gallin et al. [10], the
mechanochemical force balance equation between cells and matrix is

∇ · P + % f = 0, (2.4)

where P is a stress tensor and matrix is f is an external body force. The stress tensor P is
composed of two components:

P = Pmatrix + Pcell−matrix.

We model the matrix as a linear, isotropic visco-elastic continuum material with stress
tensor

Pmatrix = P(vis)
matrix + P(el)

matrix,

P(vis)
matrix = −pI + 2µD + µ′(trD)I, P(el)

matrix = 2λE + λ′(trE)I,



where D = D(v) = 1
2
(∇v + ∇vT) is the velocity deformation tensor, E = E(u) = 1

2
(∇u +

∇uT) is the displacement deformation tensor, I is the unit tensor, µ, µ′ are the viscosities
and λ, λ′ are Lamé coefficients satisfying µ > 0, 3µ′ + 2µ ≥ 0, λ > 0, 3λ′ + 2λ ≥ 0 in three
dimensional case (see, for example [13]).

Mesenchymal cells can exert large traction forces by attaching to the matrix. We model
the stress due to this cell-matrix interaction by

Pcell−matrix = τ(n) n (% + β ∇2%)(1 + γ(V − V̄ ))I,

where τ(n) (> 0) is the traction per unit length per cell. Traction term accounts for cell-cell
contact inhibition in populations of hight cell density; it also depends on the local matrix
density % (short-range traction) and nonlocal matrix density β∇2% (long-range traction),
where β > 0 measures the strength of this long-range traction. The dermal to epidermal
interaction is introduced through the γ(V − V̄ ) term, where V̄ is the uniform steady state
of the chemical V and γ is a measure of the strength of the interaction.
The body force can be considered as a resistive force arising from the fibrous tendrils which
attach to the subdermal layer, f = −su with an elastic constant s.

Hence equation (2.4) can be rewritten as

∇ · [−pI + 2µD + µ′(trD)I + 2λE + λ′(trE)I (2.5)

+τ(n) n (% + β ∇2%)(1 + γ(V − V̄ ))I
]

= s%u.

The epithelial pattern formation is modelled by the Schnakenberg reaction-diffusion sys-
tem ([23]). It is assumed that hypothetical chemicals provide positional information ([26])
for epithelial morphogenesis. If we represent the concentration of the two chemicals by V
and W , the system can be written as

∂V

∂t
= A − c1V + c2V

2W + dV ∇2V − δ∇ · u, (2.6)

∂W

∂t
= B − c3V

2W + dW ∇2W, (2.7)

where dV and dW are the positive diffusion rates and, A and B are positive constants related
to the production and kinetics of the chemicals. Note that an additional term, −δ∇ ·u, has
been added to the first equation to account for the dermal to epidermal tissue interaction.
The variable ∇·u denotes the dermal cell dilation and δ reflects the strength of the coupling
between the layers.



In this paper we consider only the one-dimensional situation:

∂n

∂t
= dn

∂2n

∂x2
− ∂

∂x

(
αn

∂%

∂x

)
− ∂

∂x
(nv) + M(n),

∂%

∂t
+ v

∂%

∂x
= −%

∂v

∂x
+ S(n, %, u),

∂

∂x

[
−p(%) + (2µ + µ′)

∂v

∂x
+ (2λ + λ′)

∂u

∂x

+τ(n)n

(
% + β

∂2%

∂x2

)
(1 + γ(V − V̄ ))

]
= s%u,

V̇ = A − c1V + c2V
2W + dV

∂2V

∂x2
− δ

∂u

∂x
,

Ẇ = B − c3V
2W + dW

∂2W

∂x2
,

v = u̇.

(2.8)

These equations are studied in the domain x ∈ (0, 1), t > 0.

2.2 Initial Conditions and Boundary Conditions

For the system mentioned above, we need to assign appropriate initial and boundary condi-
tions. In this paper, the initial conditions are given by

(n, %, u, V,W )|t=0 = (n0, %0, u0, V0,W0)(x), x ∈ (0, 1). (2.9)

The boundary conditions for v are supposed to be(
v,

∂2v

∂x2

)∣∣∣∣
x=0,1

= (0, 0), (2.10)

and also for n, V,W (
∂n

∂x
,
∂V

∂x
,
∂W

∂x

)∣∣∣∣
x=0,1

= (0, 0, 0). (2.11)

2.3 Setting up the problem

Let us introduce the Lagrangian coordinate. For arbitrary fixed point (x, t) ∈ (0, 1)×(0,∞),
we consider the solution curve X(τ ; x, t) of the Cauchy problem

dX(τ ; x, t)

dτ
= v(X(τ ; x, t), τ), for 0 < τ,

X(t; x, t) = x.

The unique existence of such a solution curve is guaranteed from the fundamental existence
theorem of ordinary differential equation as long as v is suitably smooth. Let X(0; x, t) = ξ.
Then this is uniquely solvable in x:

x = ξ +

∫ t

0

v(X(τ ; ξ, 0), τ) dτ ≡ ξ +

∫ t

0

v̂(ξ, τ) dτ ≡ X
bv(ξ, t). (2.12)



It is well known that this mapping (x, t) 7−→ (ξ, t) is one-to-one from (0, 1)×(0,∞) onto
(0, 1)×(0,∞).

Since it follows from (2.12) that

∂

∂x
=

1

1 +

∫ t

0

v̂ξ(ξ, τ) dτ

∂

∂ξ
≡ D

bv

((·)ξ and (·)t represent the partial derivatives with respect to ξ and t, respectively), by
denoting w(x, t) = w(X

bv(ξ, t), t) = ŵ(ξ, t), (2.8) becomes

n̂t = dnD2
bv n̂ − D

bv (α n̂ D
bv %̂) − n̂ D

bv v̂ + M(n̂),

%̂t = −%̂ D
bv v̂ + S(n̂, %̂, û),

D
bv [−p(%̂) + (2µ + µ′) D

bv v̂ + (2λ + λ′) D
bv û

+τ(n̂)n̂ (%̂ + βD2
bv %̂)

(
1 + γ

(
V̂ − V̄ (bv)

))]
= s %̂ û,

V̂t = A(bv) − c1V̂ + c2V̂
2Ŵ + dV D2

bv V̂ − δD
bv û,

Ŵt = B(bv) − c3V̂
2Ŵ + dW D2

bv Ŵ ,

v̂ = ût,

(2.13)

where (
V̄ (bv), A(bv), B(bv)

)
(ξ, t) =

(
V̄ , A,B

)
(Xv̂(ξ, t), t).

The initial and boundary conditions become(
n̂, %̂, û, V̂ , Ŵ

)∣∣∣
t=0

= (n0, %0, u0, V0, W0)(ξ), (2.14)v̂, v̂ξξ −
v̂ξ

1 +

∫ t

0

v̂ξ dτ

∫ t

0

v̂ξξ dτ, n̂ξ, V̂ξ, Ŵξ


∣∣∣∣∣∣∣∣
ξ=0,1

= (0, 0, 0, 0, 0). (2.15)

Equations (2.13)2 and (2.13)6 are easily solved as

%̂(ξ, t) =
%0(ξ)

1+

∫ t

0

v̂ξ(ξ, τ) dτ

exp

(∫ t

0

S̃(n̂, %̂, û)(ξ, τ) dτ

)
, S̃ ≡ S(n̂, %̂, û)

%̂
, (2.16)

and

û(ξ, t) = u0(ξ) +

∫ t

0

v̂(ξ, τ) dτ, (2.17)

respectively.
Further, using (2.16), we can rewrite problem (2.13)-(2.15) as





n̂t − dn n̂ξξ = dn

(
D2

bv − ∂2
ξ

)
n̂ − D

bv (α n̂ D
bv %̂) − n̂ D

bv v̂ + M(n̂),

(2µ + µ′) φt − β n0 τ(n0) φξξ = −(2µ + µ′)
(
D2

bv − ∂2
ξ

)
v̂

−β

[
D

bv

(
n̂ τ(n̂) D2

bv %̂
(
1 + γ

(
V̂ − V̄ (bv)

)))
− n0 τ(n0)

∫ t

0

∂4
ξ v̂ dτ

]
−D

bv

[
−p(%̂) + (2λ + λ′) D

bv û + n̂ τ(n̂) %̂
(
1 + γ

(
V̂ − V̄ (bv)

))]
+ s %̂ û,

V̂t − dV V̂ξξ = A(bv) − c1V̂ + c2V̂
2Ŵ + dV

(
D2

bv − ∂2
ξ

)
V̂ − δD

bv û,

Ŵt − dW Ŵξξ = B(bv) − c3V̂
2Ŵ + dW

(
D2

bv − ∂2
ξ

)
Ŵ

(2.18)

with ∫ t

0

v̂ξξ(ξ, τ) dτ = φ(ξ, t), (2.19)(
n̂, φ, V̂ , Ŵ

)∣∣∣
t=0

= (n0, 0, V0, W0)(ξ), (2.20)(
n̂ξ, V̂ξ, Ŵξ

)∣∣∣
ξ=0,1

= (0, 0, 0), φ |ξ=0,1 =
v̂ξ

1 +

∫ t

0

v̂ξ dτ

∫ t

0

φ dτ

∣∣∣∣
ξ=0,1

. (2.21)

It is easily seen that equation (2.19) and boundary condition (2.15) imply

v̂(ξ, t) = −ξ

∫ 1

0

dξ′
∫ ξ′

0

φt(ξ
′′, t) dξ′′ +

∫ ξ

0

dξ′
∫ ξ′

0

φt(ξ
′′, t) dξ′′. (2.22)

The aim of this paper is to prove an unique existence theorem of local in time solution
to the nonlinear problem (2.13)-(2.15), that is, (2.16)-(2.22) in Sobolev-Slobodetskĭı spaces.

Here we only state the main theorem, which is the improved version of the result in [11].

3 Main Results

Before describing the main theorem in this paper we introduce the Sobolev-Slobodetskĭı
spaces.

Let Ω be a finite open interval in R and l be a non-negative number. By W l
2(Ω) we

denote the space of functions u(x) equipped with the standard norm:

‖u‖2
W l

2(Ω) =
∑
k<l

∥∥Dk
xu

∥∥2

L2(Ω)
+ ‖u‖2

Ẇ l
2(Ω) ,



where

‖u‖2
Ẇ l

2(Ω) =


∥∥Dl

xu
∥∥2

L2(Ω)
if l is an integer,∫

Ω

∫
Ω

|D[l]
x u(x) − D

[l]
y u(y)|2

|x − y|1+2(l−[l])
dxdy if l is not an integer.

Here [l] is an integral part of l, Dk
x = dk/dxk and ‖·‖L2(Ω) is the standard norm in L2(Ω).

The anisotropic space W
l,l/2
2 (QT ) in the cylindrical domain QT = Ω × (0, T ) is defined

by L2(0, T ; W l
2(Ω)) ∩ L2(Ω; W

l/2
2 (0, T )), whose norm is introduced by the formula

‖u‖2

W
l,l/2
2 (QT )

=

∫ T

0

‖u‖2
W l

2(Ω) dt +

∫
Ω

‖u‖2

W
l/2
2 (0,T )

dx ≡ ‖u‖2

W l,0
2 (QT )

+ ‖u‖2

W
0,l/2
2 (QT )

,

where W l,0
2 (QT ) = L2(0, T ; W l

2(Ω)) and W
0,l/2
2 (QT ) = L2(Ω; W

l/2
2 (0, T )).

We enumerate the assumptions:

Assumptions

1. dn, dV , dW and β are positive constants;

2. α, γ, s, δ, c1, c2 and c3 are constants;

3. µ, µ′, λ and λ′ are constants satisfying 2µ + 2µ′ > 0 and 2λ + λ′ > 0;

4. A, B ∈ L2((0, 1) × (0, T )) ∩ L∞(0, T ; L2(0, 1)),
V̄ ∈ L2((0, T ); W 1

2 (0, 1)) ∩ L∞(0, T ; W 1
2 (0, 1)), V̄xx ∈ L∞((0, 1) × (0, T ));

5. (n0, %0, u0, V0,W0) ∈ W 2
2 (0, 1) × W 2

2 (0, 1) × W 3
2 (0, 1) × W 1

2 (0, 1) × W 1
2 (0, 1),

0 < n0 ≤ n0 ≤ n0, 0 < %
0
≤ %0 ≤ %0;

6. S̃ ∈ C3(R+ × R+ × R), p, M, τ ∈ C1(R+), τ(n) > 0 for any n ∈ R+.

Now the following is our main theorem.

Theorem 3.1 Under the above assumptions there exists T ∗ ∈ (0, T ) such that the problem

(2.16)-(2.22) has a unique solution (n̂, φ, V̂ , Ŵ ) ∈ W
3,3/2
2 ((0, 1)×(0, T ∗)) × W 2,1

2 ((0, 1)×
(0, T ∗)) × W 2,1

2 ((0, 1)×(0, T ∗)) × W 2,1
2 ((0, 1)×(0, T ∗)) and v̂ ∈ W 2,0

2 ((0, 1)×(0, T ∗)).
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