Direct and inverse bifurcation problems for semilinear equations

Tetsutaro Shibata

Laboratory of Mathematics, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
tshibata@hiroshima-u.ac.jp

We consider the bifurcation problem

$$
\begin{aligned}
-u^{\prime \prime}(t) & =\lambda(u(t)+g(u(t))), \quad x \in I:=(-1,1), \\
u(t) & >0, \quad t \in I \\
u(-1) & =u(1)=0 .
\end{aligned}
$$

Here, $\lambda>0$ is a bifurcation parameter. The typical examples of $g(u)$ are: $g(u)=g_{1}(u):=$ $\sin \sqrt{u}, g_{2}(u):=\sin u^{2}\left(=\sin \left(u^{2}\right)\right)$. Then it is well known that under the suitable conditions on $g(u), \lambda$ is parameterized by the maximum norm $\alpha=\left\|u_{\lambda}\right\|_{\infty}$ of the solution u_{λ} corresponding to λ and is written as $\lambda=\lambda(g, \alpha)$. It should be mentioned that if $g(u)=g_{1}(u)$, then this problem has been proposed in Cheng [2] as an example which has arbitrary many solutions near the line $\lambda=\pi^{2} / 4$. In this talk, we show that the bifurcation diagram of $\lambda\left(g_{1}, \alpha\right)$ intersects the line $\lambda=\pi^{2} / 4$ infinitely many times by establishing the precise asymptotic formulas for $\lambda\left(g_{1}, \alpha\right)$ as $\alpha \rightarrow \infty$. We also establish the precise asymptotic formulas for $\lambda\left(g_{i}, \alpha\right)(i=1,2)$ as $\alpha \rightarrow \infty$ and $\alpha \rightarrow 0$. We also treat the other nonlinear term $g(u)$. We apply these results to the new concept of inverse bifurcation problems.

References

[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543.
[2] Y.J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, Differential Integral Equations 15 (2002), 1025-1044.
[3] A. Galstian, P. Korman and Y. Li, On the oscillations of the solution curve for a class of semilinear equations, J. Math. Anal. Appl. 321 (2006), 576-588.
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Daniel Zwillinger and Victor Moll. Eighth edition. Elsevier/Academic Press, Amsterdam, 2015.
[5] P. Korman and Y. Li, Infinitely many solutions at a resonance, Electron. J. Differ. Equ. Conf. 05, 105-111.
[6] P. Korman, An oscillatory bifurcation from infinity, and from zero, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 335-345.
[7] P. Korman, Global solution curves for semilinear elliptic equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2012).
[8] I. Krasikov, Approximations for the Bessel and Airy functions with an explicit error term, LMS J. Comput. Math. 17 (2014), 209-225.
[9] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 1970/1971 1-13.
[10] T. Shibata, Oscillatory bifurcation for semilinear ordinary differential equations, Electron. J. Qual. Theory Differ. Equ. 2016, No. 44, 1-13.

