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We consider the bifurcation problem

—u'(t) = Au(t) +g(u(), zel:=(-11),
u(t) > 0, tel,

u(—1) = wu(l)=0.

Here, A > 0 is a bifurcation parameter. The typical examples of g(u) are: g(u) = g1(u) :=
sin\/u, g2(u) := sinu?(= sin(u?)). Then it is well known that under the suitable conditions
on g(u), A is parameterized by the maximum norm « = ||u,||» of the solution wu) corre-
sponding to A and is written as A = A(g, «). It should be mentioned that if g(u) = g1 (u),
then this problem has been proposed in Cheng [2] as an example which has arbitrary many
solutions near the line A = 7%2/4. In this talk, we show that the bifurcation diagram of
A(g1, @) intersects the line A = 72 /4 infinitely many times by establishing the precise asymp-
totic formulas for A\(g1, ) as o — 0o. We also establish the precise asymptotic formulas for
AMgi,a) (i =1,2) as @ — oo and o — 0. We also treat the other nonlinear term g(u). We

apply these results to the new concept of inverse bifurcation problems.
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