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Motivation

Our interest is motion of a planar curve by a power of its curvature:

V = κα = |κ|α−1κ,

where α > 0 is given, κ is the curvature and V is the normal velocity.

[Andrews ’98, ’03] [Schulze ’05, ’06]

Applications in Image Processing:

Define a grey-scale image to be a function u0 : R2 → R, whose range is [0, 255].
Let the contours move under curvature flow in the level set formulation:

ut
|∇u|

=

[
div

(
∇u

|∇u|

)]α
in R2 × (0,∞),

u(·, 0) = u0 in R2.

[Alvarez-Lions-Morel ’92] [Alvarez-Guichard-Lions-Morel ’93] [Cao ’03]
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Applications in Image Processing

α = 1/3 α = 2

Images from F. Cao, Geometric Curve Evolution and Image Processing, Springer, 2003
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Goal

On the choice of α > 0 [Cao ’03]

If the purpose is shape analysis, small powers seem to be more efficient.

If the purpose is image denoising, large powers may be more suitable.

Goal
We aim to rigorously understand the asymptotic behavior of the solution uα

when α → 0 and when α → ∞.

See [R. M. Chen-L ’16] [L, preprint] for the vanishing exponent case (α → 0).

We discuss the large exponent case (α → ∞) in this talk.
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Power Curvature Flow

We focus on the case n = 2 for simplicity. Consider

(PCFα)

 ut − |∇u|
[
div

(
∇u

|∇u|

)]α
= 0 in R2 × (0,∞),

u(x , 0) = u0(x) for x ∈ R2 .

Existence and uniqueness of viscosity solutions uα are due to

[Chen-Giga-Goto ’91] [Evans-Spruck ’91] for α = 1;

[Ishii-Souganidis ’95] for a general α > 0.

Restriction on the class of test functions [Ishii-Souganidis ’95]

A function ϕ ∈ C 2(R2 × (0,∞)) is called admissible if

|ϕ(x , t)− ϕ(x0, t0)− ϕt(x0, t0)(t − t0)| ≤ f (|x − x0|) + o(|t − t0|),

holds near (x0, t0) with ∇ϕ(x0, t0) = 0, where f ∈ C 2([0,∞)) satisfies

f (0) = f ′(0) = 0, f ′′(r) > 0 for r > 0, lim
r→0

f ′(r)

rα
= 0.

(
f (r) = |r |α+2

)
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Well-posedness and Additional Properties

ut − |∇u|
[
div

(
∇u

|∇u|

)]α
= 0 in R2 × (0,∞).

Existence and uniqueness [Ishii-Souganidis ’95]

If u0 is Lipschitz in R2, then for every α > 0 there exists a unique viscosity
solution uα of (PCFα). Moreover, the comparison principle holds.

Lipschitz preserving

If u0 is Lipschitz, then uα(·, t) is Lipschitz uniformly for all α > 0 and t ≥ 0.

Convexity preserving

If u0 is quasiconvex in R2 ({x : u0(x) ≤ c} is convex for any c ∈ R), then
uα(·, t) is also quasiconvex for any α > 0 and t ≥ 0.

Quasiconvexity ⇒ div

(
∇uα

|∇uα|

)
≥ 0 ⇒ (uα)t ≥ 0 ⇒ uα ≥ u0
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Heuristics as α → ∞

Let α → ∞ in (PCFα). Formally, we have

div

(
∇u

|∇u|

)
= lim

α→∞

(
ut

|∇u|

) 1
α

= sgn

(
ut

|∇u|

)
∈ [−1, 1] in R2 × (0,∞).

Example (A radially symmetric case)

If u0(x) = h(|x |) with h : [0,∞) → R Lipschitz and nondecreasing, then

uα(x , t) = h
((

|x |α+1 + (α+ 1)t
) 1

α+1

)
is the unique solution of (PCFα). Hence, for any (x , t) ∈ R2 × (0,∞),

lim
α→∞

uα(x , t) =

{
h(1) if |x | ≤ 1

h(|x |) if |x | > 1
= max{u0(x), h(1)}.
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An Obstacle Problem

Assume u0 : R2 → R is Lipschitz, quasiconvex and coercive. We need to study

(OP) min

{
− div

(
∇U

|∇U|

)
+ 1, U − u0

}
= 0 in R2.

Difficulties
This obstacle problem is different from classical ones because of

its very strong singularity at ∇U = 0, where we cannot test;

the unbounded domain and unbounded obstacle.

Geometric interpretation of a solution U

U ≥ u0 in R2;

The curvature of level curves of U is bounded from above by 1.

The curvature of level curves of U is precisely 1 wherever U > u0.
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Definition of Solutions to the Obstacle Problem

Consider

(OP) min

{
− div

(
∇U

|∇U|

)
+ 1, U − u0

}
= 0 in R2,

Definition of viscosity solutions

An upper semicontinuous U : R2 → R is a subsolution of (OP) if

U ≥ u0 in R2;

for any ϕ ∈ C 2(R2) and x0 ∈ R2 such that U − ϕ attains a maximum at x0,

min

{
− div

(
∇ϕ

|∇ϕ|

)
+ 1, U − u0

}
≤ 0 at x0 provided ∇ϕ(x0) 6= 0.

Existence theorem [L–Yamada, preprint]

Assume that u0 is Lipschitz. Then V is a solution of (OP), where

V (x) = inf{U(x) : U is a supersolution of (OP)}, x ∈ R2.
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Nonuniqueness of Solutions

Example (Nonuniqueness)

Let the initial value u0(x) = |x | for any x ∈ R2. Then for any c ≥ 1,

Uc = max{u0, c} is a solution of

(OP) min

{
− div

(
∇U

|∇U|

)
+ 1, U − u0

}
= 0 in R2.

Tests are lost for Uc at the level c .

Our example shows that for any t > 0

limα→∞ uα(·, t) = V = U1 (c = 1).

Recall

V (x) = inf{U(x) : U is a supersol. of (OP)}.
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Large Exponent Limit

Theorem [L–Yamada, preprint]

Assume that u0 is Lipschitz, coercive and quasiconvex in R2. Let uα be the
unique viscosity solution of (PCFα). Then uα → V locally uniformly in
R2 × (0,∞) as α → ∞, where for any x ∈ R2,

V (x) = inf{U(x) : U is a supersolution of (OP)}.

By Lipschitz preserving, we may take a subsequential limit V satisfying

div

(
∇U

|∇U|

)
≤ 1.

By quasiconvexity preserving, we have uα ≥ u0, which implies V ≥ u0 in R2.

For any supersolution U of (OP) and σ ∈ (0, 1), by coercivity of u0,

W α(x , t) = U(σx) + C1(1− σ) + C2σ
αt

is a supersolution of (PCFα), which by comparison implies uα ≤ W α.

Letting α → ∞ and then σ → 1, we have V ≤ U in R2.
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Selection via a Variational Approach

The large exponent limit selects the minimal solution of

(OP) min

{
− div

(
∇U

|∇U|

)
+ 1, U − u0

}
= 0 in R2.

A variational interpretation

Assume u0 ≥ 0. Fix R � 1 and minimize

JR [U] =

ˆ
BR

|∇U(x)|+ U(x) dx = ‖U‖W 1,1(BR )

among all Lipschitz U with U ≥ u0 in R2 and U = u0 in R2 \ BR .

Example: Comparing Uc (1 ≤ c < R), we see

JR [Uc ] =
π

3

(
3R2 + 2R3

)
+

π

3

(
c3 − 3c2

)
.

min
c≥1

JR [Uc ] = JR [U2] < JR [U1] = JR [V ].

Variational solution 6= Viscosity (Perron) solution
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An Analogue for the Power Heat Equation

Large exponent behavior can also be considered for other evolution problems
such as

(PH)

{
ut − |uxx |α−1uxx = 0 in R× (0,∞),

u(·, 0) = u0 in R.

It is the space integral of parabolic p-Laplace equation (p = α+ 1):

Suppose that the unique solution of (PH) is uα. Let wα = uαx .

Then wα solves

wt − (|wx |α−1wx)x = 0 in R× (0,∞).

Large exponent behavior give an alternative approach to asymptotics of 1D
parabolic p-Laplacian as p → ∞.
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Slow/fast Diffusions and Unbounded Collapsing Sandpiles

As α → ∞, the limit of uα(·, t) (t > 0) is the minimal supersolution U of

min {−Uxx + 1,U − u0} = 0 in R

provided that u0 is Lipschitz, coercive and convex in R.

W = Ux solves the limit of parabolic p-Laplace equation as p → ∞.

It models collapse of unstable sandpiles [Evans-Feldman-Gariepy ’97].

U

W
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Summary

Conclusions:

The large exponent limit is the minimal supersolution to a nonlinear
obstacle problem in the whole space for a convex initial value (obstacle).
Uniqueness of solutions to the obstacle problem fails in general due to
the loss of tests at the vanishing gradient.

Similar results hold for the heat operator of power type and find applications
in the study of collapsing sandpiles.

Future Problem:
How can we find the limit when the initial value is not convex?

Thank you for your kind attention!
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