On Large Exponent Behavior of Power Curvature Flow Arising in Image Processing

Qing Liu

Fukuoka University

Joint work with Prof. Naoki Yamada

Mathematics and Phenomena in Miyazaki 2017 University of Miyazaki November 17, 2017

Outline

- Motivation: Applications in Image Processing
- Introduction on Power Mean Curvature Flow
- Large Exponent Behavior
- Analogues and Other Applications

Motivation

Our interest is motion of a planar curve by a power of its curvature:

$$V = \kappa^{\alpha} = |\kappa|^{\alpha - 1} \kappa,$$

where $\alpha > 0$ is given, κ is the curvature and V is the normal velocity. [Andrews '98, '03] [Schulze '05, '06]

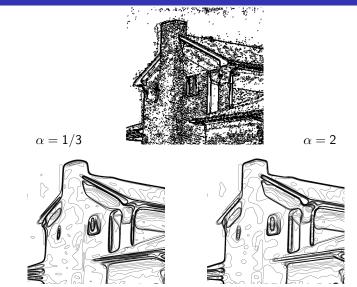
Applications in Image Processing:

Define a grey-scale image to be a function $u_0 : \mathbb{R}^2 \to \mathbb{R}$, whose range is [0, 255]. Let the contours move under curvature flow in the level set formulation:

$$\begin{cases} \frac{u_t}{|\nabla u|} = \left[\operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right) \right]^{\alpha} & \text{in } \mathbb{R}^2 \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^2. \end{cases}$$

[Alvarez-Lions-Morel '92] [Alvarez-Guichard-Lions-Morel '93] [Cao '03]

Applications in Image Processing



Images from F. Cao, Geometric Curve Evolution and Image Processing, Springer, 2003

Goal

On the choice of $\alpha > 0$ [Cao '03]

- If the purpose is shape analysis, small powers seem to be more efficient.
- If the purpose is image denoising, large powers may be more suitable.

Goal

We aim to rigorously understand the asymptotic behavior of the solution u^{α} when $\alpha \to 0$ and when $\alpha \to \infty$.

- See [R. M. Chen-L '16] [L, preprint] for the vanishing exponent case ($\alpha \rightarrow 0$).
- We discuss the large exponent case $(\alpha \to \infty)$ in this talk.

Power Curvature Flow

We focus on the case $\underline{n=2}$ for simplicity. Consider

$$(\mathrm{PCF}_{\alpha}) \quad \begin{cases} u_t - |\nabla u| \left[\mathsf{div} \left(\frac{\nabla u}{|\nabla u|} \right) \right]^{\alpha} = 0 \qquad \text{in } \mathbb{R}^2 \times (0, \infty), \\ u(x, 0) = u_0(x) \qquad \qquad \text{for } x \in \mathbb{R}^2 . \end{cases}$$

Existence and uniqueness of viscosity solutions u^{lpha} are due to

- [Chen-Giga-Goto '91] [Evans-Spruck '91] for $\alpha = 1$;
- [Ishii-Souganidis '95] for a general $\alpha > 0$.

Restriction on the class of test functions [Ishii-Souganidis '95]

A function $\varphi \in C^2(\mathbb{R}^2 \times (0,\infty))$ is called **admissible** if

$$\varphi(x,t)-\varphi(x_0,t_0)-\varphi_t(x_0,t_0)(t-t_0)|\leq f(|x-x_0|)+o(|t-t_0|),$$

holds near (x_0, t_0) with $abla arphi(x_0, t_0) = 0$, where $f \in C^2([0,\infty))$ satisfies

$$f(0) = f'(0) = 0, \quad f''(r) > 0 \text{ for } r > 0, \quad \lim_{r \to 0} \frac{f'(r)}{r^{\alpha}} = 0. \quad (f(r) = |r|^{\alpha+2})$$

Well-posedness and Additional Properties

$$|u_t - |\nabla u| \left[\operatorname{div} \left(rac{
abla u}{|
abla u|}
ight)
ight]^lpha = 0 \quad ext{in } \mathbb{R}^2 imes (0,\infty).$$

Existence and uniqueness [Ishii-Souganidis '95]

If u_0 is Lipschitz in \mathbb{R}^2 , then for every $\alpha > 0$ there exists a unique viscosity solution u^{α} of (PCF_{α}). Moreover, the **comparison principle** holds.

Lipschitz preserving

If u_0 is Lipschitz, then $u^{\alpha}(\cdot, t)$ is Lipschitz uniformly for all $\alpha > 0$ and $t \ge 0$.

Convexity preserving

If u_0 is quasiconvex in \mathbb{R}^2 ({ $x : u_0(x) \le c$ } is convex for any $c \in \mathbb{R}$), then $u^{\alpha}(\cdot, t)$ is also quasiconvex for any $\alpha > 0$ and $t \ge 0$.

$$\text{Quasiconvexity} \quad \Rightarrow \quad \text{div}\left(\frac{\nabla u^{\alpha}}{|\nabla u^{\alpha}|}\right) \geq 0 \quad \Rightarrow \quad (u^{\alpha})_t \geq 0 \quad \Rightarrow \quad u^{\alpha} \geq u_0$$

Heuristics as $\alpha \to \infty$

Let $\alpha \to \infty$ in (PCF $_{\alpha}$). Formally, we have

$$\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) = \lim_{\alpha \to \infty} \left(\frac{u_t}{|\nabla u|}\right)^{\frac{1}{\alpha}} = \operatorname{sgn}\left(\frac{u_t}{|\nabla u|}\right) \in [-1,1] \quad \text{in } \mathbb{R}^2 \times (0,\infty).$$

Example (A radially symmetric case)

If $u_0(x) = h(|x|)$ with $h: [0,\infty) \to \mathbb{R}$ Lipschitz and nondecreasing, then

$$u^{\alpha}(x,t) = h\left(\left(|x|^{\alpha+1} + (\alpha+1)t\right)^{\frac{1}{\alpha+1}}\right)$$

is the unique solution of (PCF_{α}) . Hence, for any $(x,t) \in \mathbb{R}^2 imes (0,\infty)$,

$$\lim_{\alpha \to \infty} u^{\alpha}(x, t) = \begin{cases} h(1) & \text{if } |x| \leq 1 \\ h(|x|) & \text{if } |x| > 1 \end{cases} = \max\{u_0(x), h(1)\}.$$

An Obstacle Problem

Assume $u_0 : \mathbb{R}^2 \to \mathbb{R}$ is Lipschitz, quasiconvex and coercive. We need to study

(OP)
$$\min\left\{-\operatorname{div}\left(\frac{\nabla U}{|\nabla U|}\right)+1, \ U-u_0\right\}=0 \quad \text{in } \mathbb{R}^2.$$

Difficulties

This obstacle problem is different from classical ones because of

- its very strong singularity at $\nabla U = 0$, where we cannot test;
- the unbounded domain and unbounded obstacle.

Geometric interpretation of a solution U

- $U \ge u_0$ in \mathbb{R}^2 ;
- The curvature of level curves of U is bounded from above by 1.
- The curvature of level curves of U is precisely 1 wherever $U > u_0$.

Definition of Solutions to the Obstacle Problem

Consider

(OP)
$$\min\left\{-\operatorname{div}\left(\frac{\nabla U}{|\nabla U|}\right)+1, \ U-u_0\right\}=0 \quad \text{in } \mathbb{R}^2,$$

Definition of viscosity solutions

An upper semicontinuous $U : \mathbb{R}^2 \to \mathbb{R}$ is a subsolution of (OP) if

- $U \ge u_0$ in \mathbb{R}^2 ;
- for any $\varphi \in C^2(\mathbb{R}^2)$ and $x_0 \in \mathbb{R}^2$ such that $U \varphi$ attains a **maximum** at x_0 ,

$$\min\left\{-\operatorname{div}\left(\frac{\nabla\varphi}{|\nabla\varphi|}\right)+1, \ U-u_0\right\} \leq 0 \quad \text{at x_0 provided $\nabla\varphi(x_0)\neq 0$}.$$

Existence theorem [L-Yamada, preprint]

Assume that u_0 is Lipschitz. Then V is a solution of (OP), where

 $V(x) = \inf\{U(x) : U \text{ is a supersolution of (OP)}\}, x \in \mathbb{R}^2.$

Definition of Solutions to the Obstacle Problem

Consider

(OP)
$$\min\left\{-\operatorname{div}\left(\frac{\nabla U}{|\nabla U|}\right)+1, \ U-u_0\right\}=0 \quad \text{in } \mathbb{R}^2,$$

Definition of viscosity solutions

- A lower semicontinuous $U : \mathbb{R}^2 \to \mathbb{R}$ is a supersolution of (OP) if
 - $U \ge u_0$ in \mathbb{R}^2 ;
 - for any $\varphi \in C^2(\mathbb{R}^2)$ and $x_0 \in \mathbb{R}^2$ such that $U \varphi$ attains a minimum at x_0 ,

$$\min\left\{-\operatorname{div}\left(\frac{\nabla\varphi}{|\nabla\varphi|}\right)+1, \ U-u_0\right\} \geq 0 \quad \text{at x_0 provided $\nabla\varphi(x_0)\neq 0$}.$$

Existence theorem [L-Yamada, preprint]

Assume that u_0 is Lipschitz. Then V is a solution of (OP), where

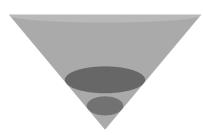
 $V(x) = \inf\{U(x) : U \text{ is a supersolution of (OP)}\}, x \in \mathbb{R}^2.$

Nonuniqueness of Solutions

Example (Nonuniqueness)

Let the initial value $u_0(x) = |x|$ for any $x \in \mathbb{R}^2$. Then for any $c \ge 1$, $U_c = \max\{u_0, c\}$ is a solution of

(OP)
$$\min\left\{-\operatorname{div}\left(\frac{\nabla U}{|\nabla U|}\right)+1, \ U-u_0\right\}=0 \quad \text{in } \mathbb{R}^2.$$



Tests are lost for U_c at the level c. Our example shows that for any t > 0 $\lim_{\alpha \to \infty} u^{\alpha}(\cdot, t) = V = U_1$ (c = 1). Recall

 $V(x) = \inf\{U(x) : U \text{ is a supersol. of } (OP)\}.$

Large Exponent Limit

Theorem [L-Yamada, preprint]

Assume that u_0 is Lipschitz, coercive and quasiconvex in \mathbb{R}^2 . Let u^{α} be the unique viscosity solution of (PCF_{α}) . Then $u^{\alpha} \to V$ locally uniformly in $\mathbb{R}^2 \times (0, \infty)$ as $\alpha \to \infty$, where for any $x \in \mathbb{R}^2$,

 $V(x) = \inf\{U(x) : U \text{ is a supersolution of (OP)}\}.$

• By Lipschitz preserving, we may take a subsequential limit V satisfying

$$\mathsf{div}\left(\frac{\nabla U}{|\nabla U|}\right) \leq 1.$$

- By quasiconvexity preserving, we have $u^{\alpha} \ge u_0$, which implies $V \ge u_0$ in \mathbb{R}^2 .
- For any supersolution U of (OP) and $\sigma \in (0, 1)$, by coercivity of u_0 ,

$$W^{\alpha}(x,t) = U(\sigma x) + C_1(1-\sigma) + C_2 \sigma^{\alpha} t$$

is a supersolution of (PCF_{α}) , which by comparison implies $u^{\alpha} \leq W^{\alpha}$.

• Letting $\alpha \to \infty$ and then $\sigma \to 1$, we have $V \leq U$ in \mathbb{R}^2 .

Selection via a Variational Approach

The large exponent limit selects the minimal solution of

(OP)
$$\min\left\{-\operatorname{div}\left(\frac{\nabla U}{|\nabla U|}\right)+1, \ U-u_0\right\}=0 \quad \text{in } \mathbb{R}^2.$$

A variational interpretation

Assume $u_0 \ge 0$. Fix $R \gg 1$ and minimize

$$J_{R}[U] = \int_{B_{R}} |\nabla U(x)| + U(x) \, dx = \|U\|_{W^{1,1}(B_{R})}$$

among all Lipschitz U with $U \ge u_0$ in \mathbb{R}^2 and $U = u_0$ in $\mathbb{R}^2 \setminus B_R$.

Example: Comparing U_c $(1 \le c < R)$, we see $J_R[U_c] = \frac{\pi}{3} (3R^2 + 2R^3) + \frac{\pi}{3} (c^3 - 3c^2).$ $\min_{c \ge 1} J_R[U_c] = J_R[U_2] < J_R[U_1] = J_R[V].$ Variational solution \neq Viscosity (Perron) solution

An Analogue for the Power Heat Equation

• Large exponent behavior can also be considered for other evolution problems such as

(PH)
$$\begin{cases} u_t - |u_{xx}|^{\alpha - 1} u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}. \end{cases}$$

It is the space integral of parabolic *p*-Laplace equation (*p* = α + 1):
 Suppose that the unique solution of (PH) is u^α. Let w^α = u^α_x.
 Then w^α solves

$$w_t - (|w_x|^{\alpha-1}w_x)_x = 0$$
 in $\mathbb{R} \times (0,\infty)$.

• Large exponent behavior give an alternative approach to asymptotics of 1D parabolic *p*-Laplacian as $p \to \infty$.

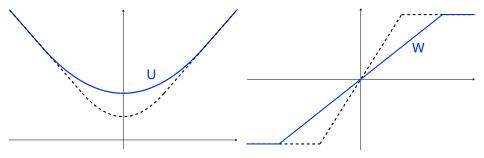
Slow/fast Diffusions and Unbounded Collapsing Sandpiles

As $lpha o \infty$, the limit of $u^lpha(\cdot,t)$ (t>0) is the minimal supersolution U of

$$\min\left\{-U_{xx}+1, U-u_0\right\}=0 \quad \text{in } \mathbb{R}$$

provided that u_0 is Lipschitz, coercive and convex in \mathbb{R} .

 $W = U_x$ solves the limit of parabolic *p*-Laplace equation as $p \to \infty$. It models collapse of unstable sandpiles [Evans-Feldman-Gariepy '97].



Summary

Conclusions:

- The large exponent limit is the minimal supersolution to a nonlinear obstacle problem in the whole space for a convex initial value (obstacle). Uniqueness of solutions to the obstacle problem fails in general due to the loss of tests at the vanishing gradient.
- Similar results hold for the heat operator of power type and find applications in the study of collapsing sandpiles.

Future Problem:

• How can we find the limit when the initial value is not convex?

Thank you for your kind attention!