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Introduction

We consider the following nonlinear eigenvalue problems

−u′′(t) = λ (u(t) + g(u(t))) , t ∈ I =: (−1, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(−1) = u(1) = 0, (1.3)

where g(u) ∈ C(R̄+) and λ > 0 is a parameter.

It is well known (cf. [T. Laetsch, 1970]) that if

u+ g(u) > 0 for u > 0,

then by time-map method, we find that λ is parameterized by using

α = ∥u∥∞, such as λ = λ(α) and is a continuous function of α > 0. Since

λ depends on g, we write

λ = λ(g, α).
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oscillating bifurcation curve

One of the nonlinear terms g(u) we are interested in is

g1(u) = sin
√
u.

In this case, the equation (1.1)–(1.3) has been proposed in Cheng (2002)

as a model problem which has arbitrary many solutions near λ = π2/4.

Theorem 1.0.([Cheng, 2002]) Let g(u) = sin
√
u (u ≥ 0). Then for any

integer r ≥ 1, there is δ > 0 such that if λ ∈ (λ1 − δ, λ1 + δ), then

(1.1)–(1.3) has at least r distinct solutions.

・Certainly, Theorem 1.0 gives us the imformation about the solution set

of (1.1)–(1.3), and we expect that λ(α) oscillates and intersects the line

λ = π2/4 infinitely many times as α → ∞.

・So we expect that the bifurcation curve for g1 is as follows.
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Structure of the bifurcation curve for g(u) = sin
√
u

α

λ

o bifurcation curve for λ(g, α) with g(u) = sin
√
u

π2/4

λ(g, α)
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Structure of the bifurcation curve for g(u) = sin
√
u

・The first purpose here is to prove the expectation above is valid.

・Precisely, we establish the asymptotic formula for λ(g, α) as α → ∞,

which gives us the well understanding why λ(g, α) intersect the line

λ = π2/4 infinitely many times.

・We also obtain the asymptotic formula for λ(g, α) as α → 0. These two

formulas clarify the total structure of λ(g, α).
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Asymptotic length of bifurcation curve

We also consider the asymptotic length of λ(g, α) (α ≫ 1) defined by

L(g, α) :=

∫ 2α

α

√
1 + (λ′(g, s))2ds. (1.4)

In particular, we are interested in g(u), which satisfies

L(g, α) = α+ o(α), (α → ∞). (1.5)

This notion will be used to propose a new concept of inverse bifurcation

problem.
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Global behavior of bifurcation curve for g(u) = sin
√
u

Theorem 1.1 ([17]). Let g(u) = g1(u) = sin
√
u. Then as α → ∞,

λ(g1, α) =
π2

4
− π3/2α−5/4 cos

(√
α− 3

4
π

)
+ o(α−5/4), (1.6)

λ′(g1, α) =
1

2
π3/2α−7/4 sin

(√
α− 3

4
π

)
+ o(α−7/4), (1.7)

L(g1, α) = α+
1

40

(
1− 1

4
√
2

)
α−5/2 + o(α−5/2). (1.8)
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Local behavior of bifurcation curve for g(u) = sin
√
u

Theorem 1.2 ([17]). Let g(u) = g1(u) = sin
√
u.

(i) As α → 0, the following asymptotic formula for λ(g1, α) holds:

λ(g1, α) =
3

4
C2
1

√
α+

3

2
C1C2α+O(α3/2), (1.9)

where

C1 :=

∫ 1

0

1√
1− s3/2

ds, C2 := −3

8

∫ 1

0

1− s2√
1− s3/2

ds. (1.10)
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Local behavior of bifurcation curve for g(u) = sin
√
u

(ii) Let v0 be a unique classical solution of the following equation

−v′′0(t) =
3

4
C2
1

√
v0(t), t ∈ I, (1.11)

v0(t) > 0, t ∈ I, (1.12)

v0(−1) = v0(1) = 0. (1.13)

Furthermore, let vα(t) := uα(t)/α. Then vα → v0 in C2(I) as α → 0.

・For the uniqueness of the positice solution of (1.12)–(1.14), we refer to

A. Ambrosetti, H. Brezis, G. Cerami (1994).
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Structure of the bifurcation curve for g(u) = sin
√
u

α

λ

o bifurcation curve for λ(g, α) with g(u) = sin
√
u

π2/4

λ(g, α)
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0scillating bifurcation curve

The other nonlinear terms we treat in this talk are

g2(u) =
1

2
sinu, (1.14)

g3(u) = sinu2. (1.15)

We know that the shape of λ(g2, α) is something like Fig.2 below.

π2/6

α

λ

o
Fig. 2

π2/4

λ(g2, α)
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Structure of the bifurcation curve for g(u) = 1
2 sinu

Theorem 1.3 ([15]). Let g(u) = g2(u) = (1/2) sinu. Then as α → ∞

λ(g2, α) =
π2

4
− π

2α

√
π

2α
sin

(
α− 1

4
π

)
+O(α−2), (1.16)

λ′(g2, α) = − π

2α

√
π

2α
cos

(
α− π

4

)
+ o(α−3/2), (1.17)

L(g2, α) = α+
3π3

256
α−2 + o(α−2). (1.18)
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Global structure of the bifurcation curve for g(u) = sin u2

Theorem 1.4 ([17]). Let g(u) = g3(u) = sinu2. Then as α → ∞,

λ(g3, α) =
π2

4
− π3/2

2
α−2 cos

(
α2 − 3

4
π

)
+ o(α−2), (1.19)

λ′(g3, α) =
π3/2

α
sin

(
α2 − 3

4
π

)
+ o(α−1). (1.20)

L(g3, α) = α+
π3

8α
+ o(α−1). (1.21)
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Local behavior of the bifurcation curve for g(u) = sinu2

Theorem 1.5 ([17]). Let g(u) = g3(u) = sinu2. Then as α → 0,

λ(g3, α) =
π2

4
− 1

3
πA1α+

(
1

9
A2

1 +
1

6
πA2

)
α2 + o(α2), (1.22)

where

A1 =

∫ 1

0

1− s3

(1− s2)3/2
ds, A2 =

∫ 1

0

(1− s3)2

(1− s2)5/2
ds. (1.23)
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Structure of the bifurcation curve for g(u) = sinu2

α

λ

o

bifurcation curve for λ(α) with g(u) = sinu2

π2/4

λ(α)
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Inverse problem A

Inverse problem A

Assume that

g ∈ Λ := {g ∈ C(R̄+) : λ(g, α) → π2/4 as α → ∞}

satisfies

L(g, α) = α+ o(α), (α → ∞). (1.24)

Then is it possible to distinguish g from gi (i = 1, 2, 3) by the second

term of L(g, α) ?
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Inverse Problem A (Weak Version)

・This approach for inverse bifurcation problem seems to be a new

attempt, and it is significant to consider whether this framework is

suitable or not, since a few attempts have so far been made.

・We restrict our attention to the ’monotone’ nonlinear terms and make

the simple approach to Inverse problem A.

Inverse Problem A（Weak Version)

Assume that g(u) ∈ C1(R̄+) satisfies the following assumption (C.1).

(C.1) g(0) = g′(0) = 0, g′(u) ≥ 0 for u > 0 and g(u) = Cum for u ≥ 1,

where C > 0 and 0 < m < 1 are constants.
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Graph of λ(g, α) (g(u) is ”monotome” type)

α

λ

o

bifurcation curve for g(u) ∼ Cum

π2/4

λ(g, α)
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Answer to Inverse Problem A

Theorem 1.6 ([17]). Let g(u) satisfy (C.1). Then as α → ∞,

L(g, α) = α+
22m−3 − 1

2(2m− 3)
A(m)2α2m−3 + o(α2m−3), (1.25)

λ(g, α) =
π2

4
− π

m+ 1
CC(m)αm−1 + o(αm−1), (1.26)

λ′(g, α) = −m− 1

m+ 1
πCC(m)αm−2 + o(αm−2), (1.27)

where

A(m) :=
(1−m)πCC(m)

1 +m
, C(m) =

∫ 1

0

1− sm+1

(1− s2)3/2
ds. (1.28)
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Answer to Inverse Problem A (Weak Version)

g1(u) = sin
√
u, g2(u) =

1

2
sinu, g3(u) = sinu2,

and g(u) is a ”monotone type” (0 < m < 1). Then by [15] and [17],

L(g1, α) = α+
1

40

(
1− 1

4
√
2

)
α−5/2 + o(α−5/2),

L(g2, α) = α+
3π3

256
α−2 + o(α−2),

L(g3, α) = α+
π3

8
α−1 + o(α−1),

L(g, α) = α+
22m−3 − 1

2(2m− 3)
A(m)2α2m−3 + o(α2m−3).

・We can distinguish g and g3 by the second term of L(g, α).

・If we put m = 1/4 and m = 1/2 choose a parameter C

appropriately, we can not distinguish g and g1, g2 by the second term
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How to prove these Theorems

Proof of Theorems

= time-map

+ Asymptotic formulas for some special functions.

・The proofs of the Theorems in this section basically depend on the

time-map argument. In particular, the key tool of the proof of Theorem

1.1 is the asymptotic formula for the Bessel functions obtained by Krasikov

(2016).
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blow-up rate of large solutions for a canonical class of one-dimensional

problems on the half-line. J. Differential Equations 244 (2008), 3180–3203.
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