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Motivation:

tionary solutions .

Let us consider the variations of bifurcations from the sta-

e Are there possibilities that we can compute the bifurcation
equation from non-uniform steady state 7

e One of the answer is double degeneracy of n - n + 1 modal
interaction induced by Turing instability.

that is, triple degenerate case.

In this talk, we would like to discuss the other possibilities,

Schematic picture of
variations of bifurcations
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Linear stability and triple degeneracy:

e The following RD system is easy to understand the mecha-
nism for the triple degeneracy:

ur = Dyugg + au + bv + sw + F(u,v), =€ (0,L),t> 0,

T1v¢ = Dovgz +u — v + G(u,v), z € (0,L),t>0 (1)
Towy = Dawze +u — w, z€(0,L),t>0
Upy = vp = wg = 0, atz=0,L,

We suppose that

e the time constant 7; are very small;

e the diffusion constant D3 is very large.

Setting 71 = 7o = 0. Let us consider only the linear terms in (1):

Using the Fourier transformation, we have:

o
% = — DKy, + aiiy, + boy, + sty

0 = — Dok, + @y, — Ty,

0 = —D3k2®y, + Uy, — Wy,

The second and third equations of above can be solved as

_ Uy, _ Uy
U = ———— W, = —————
FT 14 Dok P T 14 Dak2
Therefore, we obtain
diiy,
Bk — N,
dt Kk
where
b s
A\, = a — D1k? .
ke D e T T Dok2

Now we define the neutral stability curve by

C= {(k,a), Ak: = O}
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Constants are D; = 0.25, D> = 20, D3 = 100.
Dotted line: b=s=0;
dashed line: s =0,b = —-2;

Solid line: b= —-2,s~ 1.67.

Since we are considering the Neumann boundary conditions, the
wave number k should be an integer multiple of the fundamental
wave number kg = w/L: k = mkg

Cm = {(ko, a); )‘mkg =0}

Constants are Dy = 0.25, D, =20, D3 =100, b =2, s~ 1.67.
Dotted line: Cp;

Solid line: C4q;

Dashed line: C5 ;

The triple degeneracy of 0:1:2 interaction occur at

(ko,a) ~ (0.50,0.33).
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2-component RD system with positive global feedback
Let us consider the following RD system:

u; = Diugg + au + bv + sw + F(u,v), = € (0,L), t> 0,
v = Dovgg + cu + dv + G(u,v), ze (0,L),t>0,
Twt = Dawgey + u — w, z e (0,L),t>0,

Up = vp = wg = 0, z=0,L.

(2)

e Above system consists of two component activator-inhibitor
type reaction-diffusion equations and one scalar equation
which has the feedback effect to the first component.

10

It can be reduced in simpler system of reaction-diffusion equa-
tions as follows; putting = = 0, we have

ug = Diugz + au + bv + sw + F(u,v), = € (0,L), t> 0,

v = Dovgg + cu + dv + G(u,v), ze (0,L),t>0, (3)
0 = D3wgg + u — w, ze (0,L),t>0,
Ug = vg = wg = 0, x=20,L.

If a solution (u(t,z),v(t,z),w(xz)) of (3) can be represented in
Fourier series, the third equation of (3) yields

0= —(W/L)2m2D3wm + um —wm, me{0}UN.

It can be solved as
1
= U
1+ (n/L)?2m2D3
It holds that wg = ug, and taking D3 — oo, then

m, m¢€{0}UN.

Wm

wm — 0, meN.

11

Combining them, we obtain

w(z) = wo+ Y wmcos(mrz/L)

meN

= uo+ > (1+ (x/L)*m?D3) tuy cos(mmz/L)
meN

— uQ (as D3 — o0)

= %/OLu(a:) dx.

12
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Substituting it into (2), we obtain the reaction-diffusion system
with positive global feed back as follows:

2 L
%=D1%+au+bv+F(u,v)+%/o u(t,z) dz, z € (0,L),t > 0,
ov D82”+ + dv+ G(u,v), z € (0,L),t>0
— =Dor—=+4cu v u,v), T
at 28332 ) ; 9 ) )

Oou  Ov
—=—=0atx=0,L.
or Oz aw ’

(4)

13

Assumptions:
We consider the system (4) in a function space

X = {(u,v) € [H(Q)]Q;ugc =vy=0atz= O,L},
where Q2 = (0,L) C R.

e (A1) The functions (higher order terms) F and G are suffi-
ciently smooth and F'(0,0) = G(0,0) =0 ;

e (A2) F(u,v) = —F(—u,—v) and G(u,v) = —G(—u, —v) hold.

14

e (A3) The following hold:

a,c>0,b,d<0,
a+d<0,A:=ad—bc>0,;

b
o (A4) Ec +d < 0 holds;

Then functions F and G can be presented by the taylor series
around the origin:

Fu,0) = Y fpwdv® + o(llu +[®),
j+k=3

Gu,v) = Y gwdv® + o(llu+ ).
j+k=3

15




Dynamical system on Fourier space:
If (u(t,z),v(t,z)) is a solution of (4), then we can extend it for
x € [0,2L] as follows:

u(t, ) z € [0, L], 5t z) = v(t, x) z € [0, L],
uw(t,2L —z) =z € [L,2L], v(t,2L —z) € [L,2L).

Then, (a(t,z),v(t,x)) is a solution of

u(t,x) = {

up = Dluzx+au+bv+F(u,v)—|—if§Lu(t,x)d:c, x € p,t >0,
vy = Dovge + cu 4+ dv + G(u,v), € Qp,t >0,

u(t,z) = u(t,z + 2L),uz(t,x) = ugs(t,z +2L) t > O,

v(t,z) = v(t,x + 2L),vz(t,x) = vy (t,z + 2L) ,t > 0.
(5)
Here, ©p denotes the interval (0,2L).

16

Thus, we consider the system (5) in a function space

Xp = {(u,v) € [Hpe, (2p)]%; (u(z), v(x)) = (u(2L — 2),v(2L — z))}
instead of (4). Substituting

(u(t,2),0(t,2)) = Y (um(t), vm(t))e" 0%, (6)

meZ
in to (5), We have

d Um _ Um fm
i) =m()e () mze o

17

Here,
Mo = ( a+s b ) ’
c d
M = ( a— Dika(% N DZkaé ) , (m # 0),
Jm = Z (f30umlum2um3 + fo1um;umyvma

mi1+mo+maz=m
+ f12um1Vmovms + f03UmiVmovms),
9m = Z (93Oumlumgum3 + 921Umq UmoUms
m1+mo+mz=m
+gl2umlvm2'0m3 + 903Um17)m2'0m3)-

18
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0:1:2 triple degeneracy in (4)
Triple degeneracy is obtained by solving
det Mg =detM; =detM, =0, j # ¢, j,£L €N

Then, we have

Lemma 1 For given two positive integers j,£,( 7 = £) and con-
stants D1,a,b,c,d, there exit positive constants kj’é,Dé’Z and s*
such that if (kg, Do,s) = (%,z’ D%’[,s*) then the linearized eigen-
value problem of (7) about a trivial solution has strictly three
zero eigenvalues.

19

We can compute Dj/,ké’é and s* directly:

1/2
; 1
Wt — {A 2 42y IA20:2 4 42 2—4dA'2£2}
0 {2lej2£2 G2+ 2 — /222 +2) adAj ;
. N4
pit — {dD152(K)5)? — A}
2 = S50 PP ;
72(k§)2{D152(k§)? — a}
s* = —A/d= —(ad — bc)/d.

e This yields a triple degeneracy of 0:1:2 interaction by choos-
ingj=1and ¢ =2.

20

Center manifold reduction
Let us derive the normal form on the center manifolds around
the triply degenerate point (ké’Q,Dva,s*) of (4).

Diagonalization:

We diagonalize the equations in (7) form = 0,1,2. Set (kg, D>,s) =
(ké’Q,D%Q,s*). Then changing variables ! (um, vm) = Tm ! (im, Tm), (m =
0,1,2) by the matrix

_ _ 21.2 _ 21.2
To=( d bc/d)’Tm:( d+ Dym?k3 a— Dym k0)7m21727
C C C C

we have
im ) — (0 O Um )y gt Im) = 0,1,2,
Um 0 A;@ Um am

21




Here,

Ag = d+ be/d,
Am = (a+d) —m?(D1 + D7) (kg'*)>,
fm = fm‘t(umjy'urnj):Tmt(ﬁ'rnj,ﬂnLj)’

gm -= gmh(“rnj ﬂ)mj):Tm t(ﬂ7nj75mj)'

22

Then, the following holds:

Theorem 1 The dynamics of (7) on the center manifold ( of
(7) ) can be approximated by the following system :

20 = (o + a128 + a22? + a323)z0 + aszizy,

21 = (p1 + b128 + boz? + b323)21 + bazoz1 22, (8)

Zo = (uo + clzg + czz% + C3Z%)Z2 + C4zoz%.
Here, z; denote i; (j = 0,1,2), and o(3) denotes o(|(z0, 21, 22)|3).
In addition, the coefficients u;,aj,bj,c; are dependent on the
coefficients and parameters appearing in (7).

23

Hopf-instability around the 1-mode equilibriums:
Linearized matrix of +ey := (0,+,/—u1/b2,0) is given by

an 0 —agq
Ho b2ﬂl by K1
Mye, i= 0 —2u1 0
cq cp
bQ#l K2 b2#1
Put
as —a
~ Ho — b*/il T#l
Mie1 cq4 2 co
bQHl K2 bzﬂl

24
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Put Zp1 = y/—/J,l/bQ. Then if
tr Mie, = 0 and det M4, > O,

or more precisely, if
(1o + a22p1)? + ageazyy < 0
then the matrix M., has a pair of purely imaginary eigenvalues

at

po = —po — (a2 + c2)25.

We can conclude that; (i) agcq < O is necessary; (ii) If ug =
aop1/bo then det My, attain a minimum agcq.

25

We can compute the normal form for the Hopf-bifurcation as
follows:

Lemma 2 Ifpui1by < 0 and J\Zfiel > 0 then, the norma form for the
Hopf-bifurcation around the equilibrium (0, /—u1/b2,0) is given
by the following:

dz .

=B+ Dzt ez + o2, (9)
where z and T are a new complex coordinate and the new time,
respectively, and B is a new parameter, and moreover,s is depen-

dent on the coefficient in (8), and computable.

26

- 1 2 2 2 2
¢ = sign 2672(204zp101w + 6cazpic1v +12C4Z§102’720
4251
P

3 3.6
+4cqzy10702 + 6¢a2p103 + 12¢42p10720 + deazp1vy02 + 4cazprwyin)
1
+ﬁ(3zp1a1w3 + 3Zp1wa11/2 + Zwagzgl'ygo + 6wa2251'y()2 + wa:;c%zgl
pl
2 4 2
+2vazzy1v11 + 20425104711 — 22p1010Y

2 2
—2uz,1 00711 — 2vwy20 — 6rwyo — 2011 |,

27
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-1
= —2bo221 bWV — bzt baw?c +w4b
Y20 4b2zp1(w2+b%z§1)( 225101 22p1baw ey 1
+w2b3c£zgl + w2(:41/b4z§1 + w?b? + 2b%z§1bly2
+2b325; b33 + 263251 cavba),

—WwW2pl bac224 2 2
= cizo1 + cavbaziy + 2byz51b1v
Y11 2((.02 bgzgl)( 3C4%p1 4V0421 2%p191

+bozgbaca — w?by +b1v?),
—w?

= bacaz? cqubgz2 Dbs22,b1v + boz bac
o2 452Zp1(w2+b%zg1)(34p1+ avbazpy & 2bozp1bav + bozp1 baca

+w?by 4 byv? 4 26321 b1)

(zp1 = \/—n1/ba, v = po + ao22),w = /=2 — ageazp1 ).

28

In the above case, the coefficient ¢ is dependent on the parameter
uo even though pq is fixed so that 1-mode stationary solutions
+ep exist.

Here we consider the simple case of

a €2
(1o, p2) = | Top1, w1 | -
bo" " b2
In this case,
0 0 a4z§1
Mye, = 0 —2u1 0
04251 0 0

If agcq < O then the matrix has a pair of purely imagenary eigen-
values. And in this case, the coefficient ¢ is independent of the
parameters as follows:

¢ = sign {a§(3P1 + P>) — agca(P3 + 3P4)] : (10)
29
Here,
P ! (2a1b 2a1b3 b
1 = ————5(2a1bscsas — 2a1b5 — ancgasdhy
2b5(ascs — b3)
+agcababy + axcibz + 2a2b1b3),
P ! (—2¢1b3 + 2¢1b by + cocabab
> = ————————5(—2c1b3 + 2c1bocgag — cacqagby + cocababo
2b5(agcs — b3)
+coc3bs + 2000103 + 2bac4a4by + 263cabs + 2c3b3),
1
Py = —————————(axa3b1 + apasbaby — apascabs + 2azb3b3
2by(agcq — b5)
+2a3b3 — 2azbycgas — 2brazby — 2b3asbs — 2bsagcabs),
1 2
Py = ——————5-(coazby + coagbaby — coagcabs

~ 2by(agcq — b3)
+2¢ob3b3 + 2¢3b3 — 2¢3bocsas).

(We use this formulation to compute the ¢ in the latter of this
talk).

30
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Remark

If ap > 0, then the time-periodic solutions around 1-mode sta-
tionary solutions exist even though the eigenvalues corresponding
to the spatially uniform eigenfunction ( 0-mode ) are negative.

31

A case study:
Let us study the case where

Di=1/4,a=1,b=—10,c=2,d = —5,
(11)
F(u,v) = —u3,G(u,v) = —0.943.
Then we have s* = -3 and

(kg D37%) ~ (0.87,25.88).

The coefficients of (8) are

a1 ~ 100.00, ap =~ 14644.17, a3~ 1.69 x 10°, a4 ~ 2.45 x 105,
b1 ~ —49.29, by ~ —1203.01, b3z~ —27695.10, by =~ —1652.32,
c1 & —67.14, cp =~ —3277.22, c3~ —18861.66, c4 ~ —97.761.
(12)
It follows that agcq < 0 and ¢ = —1. Therefore, time-periodic so-

lutions around 1-mode stationary solutions exist, and moreover,
they are locally asymptotically stable in this case.

32

Numerical results to RD system:
We show the numerical results which agree with the normal form
analysis.

Bifurcation diagram of RD system (4) in (11). (Vertical axis:
L2 norm of (u,v), horizontal axis: D). The Hopf-bifurcation
point (which is symbolized a black square) appears on a branch
of 1-mode stationary solution.

33




500 4600 w0 2800 900

Numerical results RD system (4) with Dy, = 27.13 in the case

(11).

(Left:) Graph of u(t,z), (t € [4500,5000],z € [0, L]).
(Right:) The graph of ||(u,v)|/;2(t), t € [4500,5000]

34
Numerical studies to chaotic behavior in (8)
We show the numerical results:
po = —0.559489, i = 0.0052, up = —0.002.
‘
oo o TN
o = ot T
N oo || nnmnnnnn
Numerical results to (8) in the case of (12)
(Left:) Orbits of solutions.
(Right:) Euclidean norm vs. time ¢t.
35
3605 - .'. : :. :»
2e05 | . oo. - ::'f
ERNITRE  CY
1e-05 I' i iii i :'|.i i
o5 | ifis
gl'l‘!ll"'lllll.h'n
ol ;. s .. . N :c f
|:-=.l H ::-En
-2&0451555 70.5‘648 -0. ;646 0. 5‘644 -0. ;642 0.564
Bifurcation diagram of Poincaré map of (8) at zg = zq,
( 20, is a coordinate of the equilibriums : (zg(¥), 21(¢), 22(¥)) =

(204, 214, 22,) )-

The parameters: p; = 0.0052, uo = —0.002. The vartical and
horizontal axes correspond to z3 and pug.
The periodic orbit disappear at ug =~ 0.5644 and it changed to

the chaotic attractor.

36
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Equilibriums of (8) in the case (12) and their linearized eigen-
values.

Equilibriums Eigenvalues
(0,0,0) —0.564489 | 0.0052 | —0.0020
(£0.0748,0,0) —0.3776 —0.2706 | 1.1190
(0,+0.0021,0) 0.0691 —0.0109 | —0.0104
+(0.0042,0.00200, —0.0001) —0.0140 0.0071 £0.0324:
+(0.0042, -0.00200, —0.0001) | —0.0140 0.0071 4+0.03244

e All equilibriums are unstable. The solution can not converge
to the equilibriums.

37

Is the complex dynamics in (8) cahos ?

We compute the Lyapunov characteristic exponents. The fol-
lowing properties are convenient to compute the Lyapunov ex-
ponents.

Scale-invariance of the normal form:

e The system (8) is invariant under the scaling:

~ ~ 2 g 2
Zj=nz, fj=np;, T=nt 'neR

Using this invariance, we can magnify the amplitude of numerical
solutions.

38

Remark:

(I) If higher order terms are O(|(zg, #1,22)|?), the scaled system
is

2= iz + f;(Z0, 21, 22 fij) + 120(| (%0, 71, 22)1°),
where f; are cubic terms in (8). Taking n — 0, the higher order
terms are banished asymptotically.

(I1) If there is a (large amplitude) solution z;(t;u;) of (8) in
t € (0,T], there exist a similar, and small amplitude solution of

(8) :
(i) = nzj(nPtn?w;),  t€(0,T]
by taking n small.

39




How to compute the Lyapunov exponents:

We use the algorithm shown in

I. Shimada and T. Nagashima, Prog. Theor. Phys. 61 (1979)
1605 — 1616.

Let
z = F(z) (13)

be a system of differential equation in R3, and let {e;},i=1,2,3
be a set of basis of tangent space at z = zg := z(0). Consider
the variational equation around the flow z(t;zg):

y(t) = DF(z(t;20))y (1) (14)

Then, the solution of it can be written as y(t) = Uty(0), where
Ut is the fundamental matrix.

40

We define

Aet,z0) = lim t7tlog ([U'ey|/le1]),
t—o0

Ae?,20) = lim t71log ([U'ey x Ules|/le1 x e,
t—o0

Me®,20) = Jim 7 log ([U'ey - (U'ez x U'es)|/le1 - (e2 x e3)]),

where €/ are j-dimensional space defined by e/ = span{es,...,e;} C
R3, and o-o0 and o x o denote inner product and exterior product.

41

Then, the Lyapunov exponents Aj, (A1 > Ao > A3) satisfy the
following:

A(el,zg) = one of values in {A1, Ao, A3},
A(e2,zg) = one of values in {(A1 + A2), (A2 + A3), (A3 + A1},

Ae3,20) = A1+ Ao+ As.

Classification of the attractors:

Attractor sign of A1 | sign of Ao | sign of A3
Fixed point — — —
Limit cycle 0 — —
Torus 0 0 0
Strange attractor —+ 0 —

42
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Equations:

20 = (po + a128 + a22? + a323)z0 + aszizy,

21 = (p1 + b128 + boz? + b323)21 + bazoz1 22,

Zo = (uo + clzg + CQZ% + C3Z%)z2 + 04zoz%
Constants

1o = —0.559489, pq = 0.0052,  up = —0.002,

a1 ~ 100.00, ap ~ 14644.17, a3 ~ 1.69 x 10%, a4 ~ 2.45 x 105,
by ~ —49.29, by ~ —1203.01, bz~ —27695.10, by ~ —1652.32,
c1 ~ —67.14, cp ~ —3277.22, c3~ —18861.66, cq~ —97.761.

15 | PPM 2011-05

43

e Scheme: Runge-Kutta-Fehlberg method (errors of the solu-
tion are smaller than 10_6) ;

e Time difference: 1072 :

e Scaling parameters: n = 22;

e Normalization: The bases normalized by Gram-Schmidt or-
thonormalization in each step;

e Time :

O<t<T

44

The Lyapunov characteristic exponents for each T

T A1 A2 A3
5x 103 | 0.014125 0.000286 | —0.136404
104 | 0.021547 0.000112 | —0.136693
5 x 10% | 0.025032 | —0.000014 | —0.137087
10° | 0.023560 | —0.000000 | —0.137040
5 x 10% | 0.023984 | —0.000028 | —0.137153
106 | 0.023906 | —0.000024 | —0.137146
5 x 10 | 0.023768 | —0.000025 | —0.137136

45




Attractor with the scaling.

Then we estimate

A1~ 0.0240, Ay~ 0.0000, A3~ —0.1371.

46

Lyapunov dimension of the attractor as follows

Definition:

(for instance, see J. Kaplan and J. York: Lecture notes in math-
ematics, vol. 730 ):

Let j be a integer satisfying

J Jj+1
Z/\E>Oand Z)\g<0,

then the Lyapunov dimension df is defined by

I A
dy=j+ =1 é‘
Aj+1

In our case, we obtain
dy ~2.175.

(cf. : Lorenz-attractor : 2.07, Rossler-attractor: 2.01;
[ see A. Wolf, et al., Physica 16 D (1985), 285 — 317 ] )

a7

e The normal form (8) yields chaotic dynamics by a suitable
choice of parameters and coefficients,

e The reaction-diffusion system has a chaotic solution on the
center manifold in a suitable settings of nonlinearity and co-
efficients (see next slide).

48
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Chaotic behavior in RD system with positive feed back
Our RD system is

ou 82 s rL
E:D1@+F(u,v)+z/o u(t,z) dz, = € (0,L),t > 0,
@—D&-i-G(uv) z € (0,L),t>0
at - 28:62 I’ I I I I
O _ % _Gate=o0.1L
ox ox

Constants:

Dy =1/4a=1b=-10,c=2,d= —5,
Dy = 26.5,kg = 0.874919 = (n/L),s = 2.978084
F(u,v) = —u3,G(u,v) = —0.9u3.

(Critical point is (kg, Do, s) =~ (0.87,25.88, 3))

49

(Left:) Projection on Fourier sapce (ug,u1,u2),
(Right:)Projection on Fourier sapce (ug,u1).

50

Numerical experiment: check the sensitivity to initial conditions

Put (uf? (2), 557 (2)) 1= (u§ (@), 9§ (2)) + (107, 0).
(@, vy and (u@,+(2)) are solutions of (4) satisfying

@ (0,2),v9(0,2)) = @S (2),v§ (@)), = 1,2

(] \H‘ \‘
“‘“‘ !

The graph of log| [[u®| ;2 — [[u®]] ;2 |(®).

51




Conclusions and remarks

e We compute normal form around a triply degenerate point,
and show a typical case in which (4) has time-periodic orbits
around one mode stationary solutions, and chaotic attrac-
tors.

e The mechanism of the chaotic dynamics is not clear in this
talk. It is going to be a future problem.

e If the Neumann boundary conditions are replaced with peri-
odic b.c. , the dynamics around 0:1:2 degenerate point is
given as a ODE system on C2 x R. There could be more
complex spatiotemporal patterns ( it is also going to be a
future problem ).

52
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