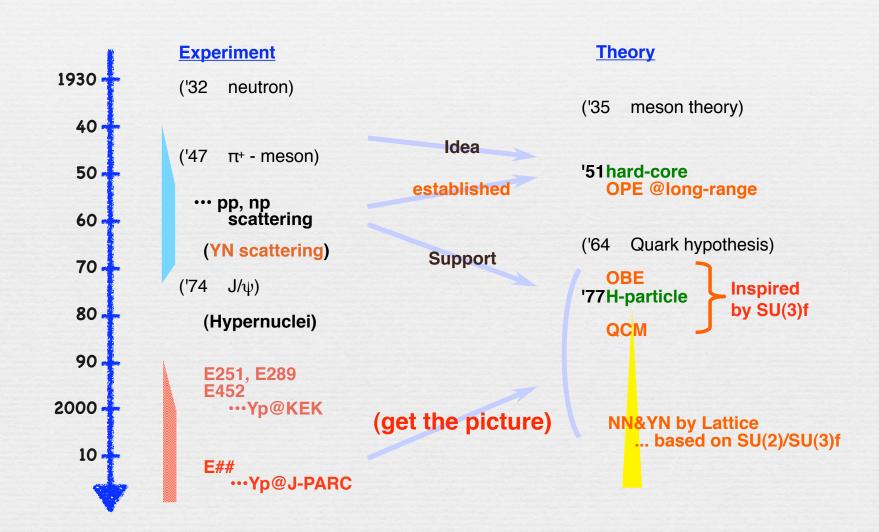
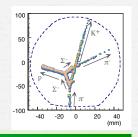
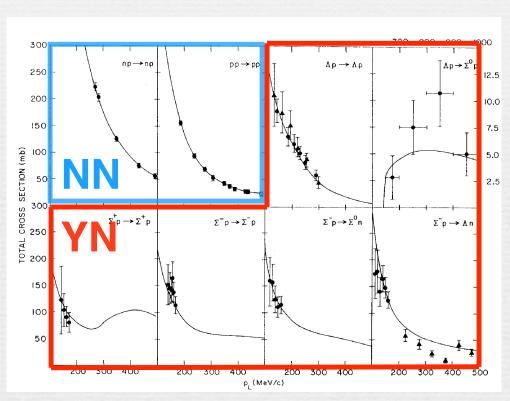

Hyperon-Proton Scattering at the J-PARC



- **Motivation**
 - historic background
 - > YN scattering experiment at KEK-PS
 - ... and at J-PARC
- ✓ Objective
- Method
- High-Speed Image Delay Tube
 - What is it?
 - Characteristics & Performances expected
- a simulation

IEIRI Masaharu これから研究会 09.02.21 @ Mîyazakî


Historic Background

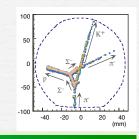


Available Yp scatt. Data [1]

- bubble chamber era '60-'70s -

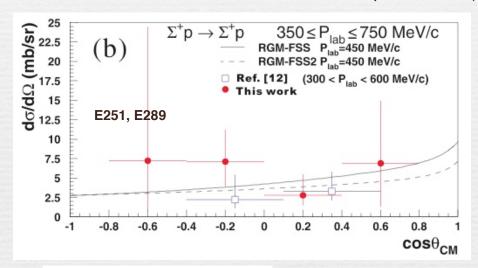
✓ bubble chamber era '60-'70s

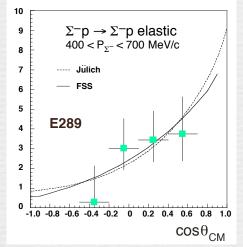
from Dover & Feshbach Ann. Phys. 198(90)321

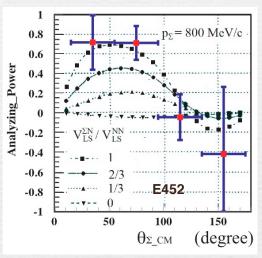

Numbers of data points

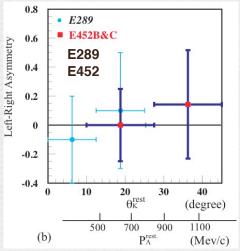
in angular distributions

	pp	pn	YN
• $d\sigma/d\Omega$	2080	3777	23(+39)
• P	1275	814	a few
 Other obs. 	1444	304	0

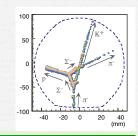

from Arndt et al. PRD28(83)97

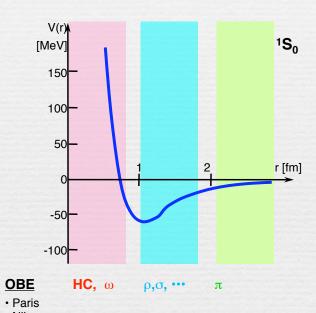

Available Yp scatt. Data [2] - at 12 GeV KEK-PS -

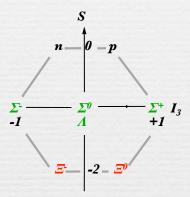



☑ at 12 GeV KEK-PS

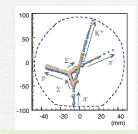
- •E251, E289 for $d\sigma/d\Omega$ (Σ +p & Σ -p)
- •E452 for polarization (Σ +p & Λ p)

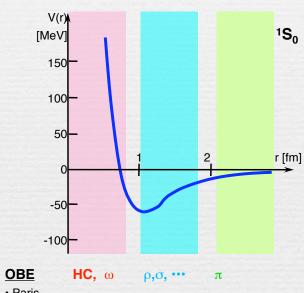






Baryon-Baryon potential

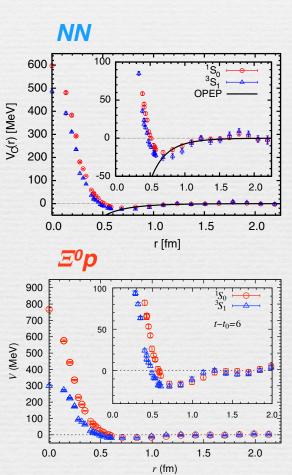



- Nijmegen
- Bonn-Julich

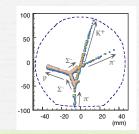
QCM $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ Eff.Meson Exch. pot. Pauli

- Tokyo
- KyotoTubingen
- · · · Flavor SU(3)

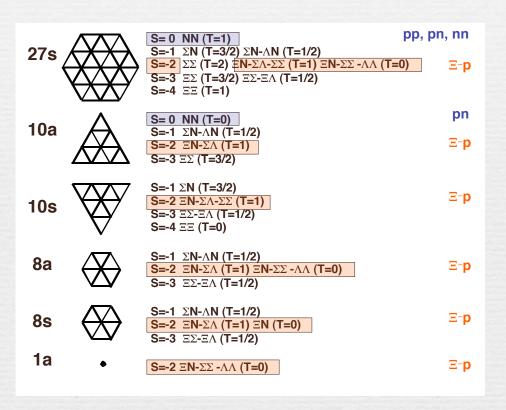
Baryon-Baryon potential



- Paris
- Nijmegen
- · Bonn-Julich

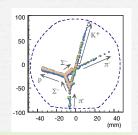

QCM $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ Eff.Meson Exch. pot. Pauli

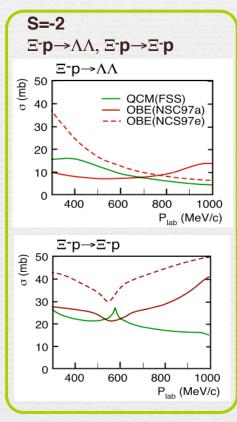
- Tokyo
- KyotoTubingen
- · · · Flavor SU(3)

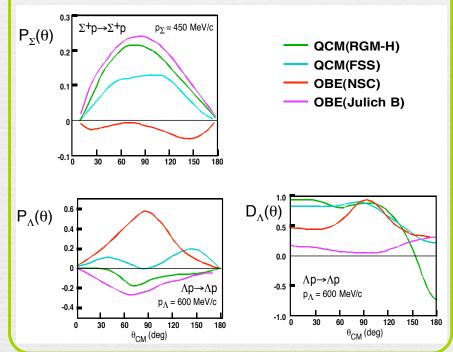

Lattce QCD simulation

Experimental Objectives at J-PARC

$$S=-2$$

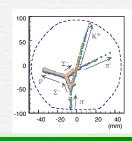

Anti-symmetric spin-orbit


$$\begin{aligned} \mathbf{M} &= \mathbf{a} + \mathbf{c} \; (\sigma_{n}^{1} + \sigma_{n}^{2}) + \mathbf{b} \; (\sigma_{n}^{1} - \sigma_{n}^{2}) \; + \; \mathbf{m} \sigma_{n}^{1} \sigma_{n}^{2} + \; \mathbf{g} (\sigma_{p}^{1} \sigma_{p}^{2} + \sigma_{K}^{1} \sigma_{K}^{2}) + \mathbf{h} (\sigma_{p}^{1} \; \sigma_{p}^{2} - \sigma_{K}^{1} \; \sigma_{K}^{2}) \\ \mathbf{I}_{0} \mathbf{P}_{y} &= 1/4 \; \mathsf{Tr} (\mathbf{M} \mathbf{M}^{\dagger} \sigma_{n}^{1}) \; = 2 \; \mathsf{Re} [(\mathbf{a} + \mathbf{m}) \mathbf{c}^{*} + (\mathbf{a} - \mathbf{m}) \mathbf{b}^{*}] \\ (\; \mathbf{I}_{0} \mathbf{A}_{y}^{\mathsf{T}} = 1/4 \; \mathsf{Tr} (\mathbf{M} \sigma_{n}^{2} \mathbf{M}^{\dagger}) \; = 2 \; \mathsf{Re} [(\mathbf{a} + \mathbf{m}) \mathbf{c}^{*} - (\mathbf{a} - \mathbf{m}) \mathbf{b}^{*}] \;) \end{aligned}$$


Calculation by Models

Polarization observables

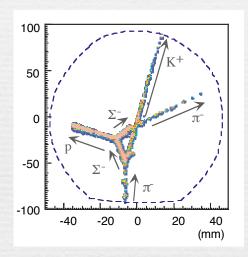
(≈ Anti-symmetric spin-orbit)



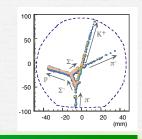
Δ(σ)≈10%

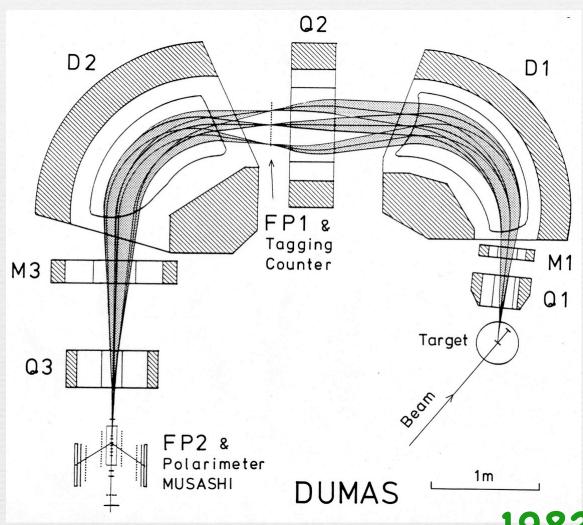
Δ(pol)≈a few - 10%

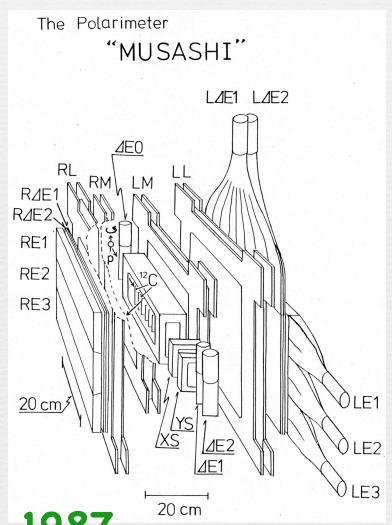
Method



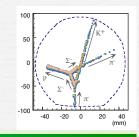
"double" scattering & decay (self-polarimeter)

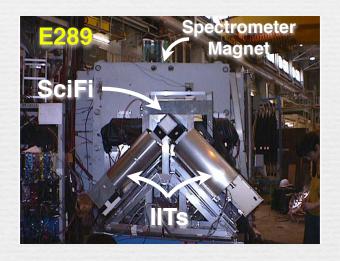

- Production $\pi^+ + p \rightarrow K^+ + \Sigma^+$ (CH)n
- Scattering $\Sigma^+ + p \rightarrow \Sigma^+ + p$ (CH)n
- Decay $\Sigma^+ \to p + \pi^0$ (51.57 %, $\alpha = -0.980$) $\Sigma^+ \to n + \pi^+$ (48.30 %, $\alpha = 0.068$)


Mean range of related charged particles...

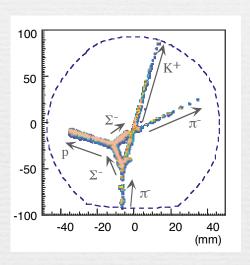

Σ+(incident) Σ+(scattered)	8 5	mm	
p (recoil)	18	mm	
p (decay) π⁺(decay)		mm	

"double" scattering & polarimeter

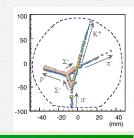




1982-1987

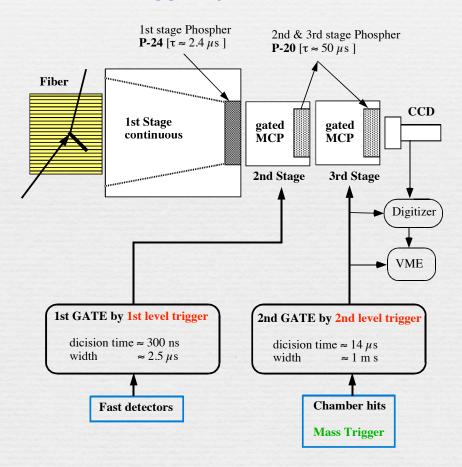

Experiments at KEK-PS

Heart of experiments (DUMAS & MUSASHI ≈ SciFi & IIT)

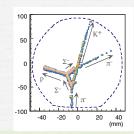


Scintillating Fiber (or Liquid Scintillator) with IIT-CCD Camera triggered by Spectrometer system

Experiments at KEK-PS



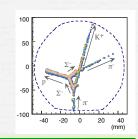
- IIT & Triggers
 - Phosphor Decay Time


 a few us
 - Decision Time
 - several hundreds ns
 - CCD image handling
 - several tens ms

Beam rate ≤ 10⁵Hz Image rate ≤ 10Hz

Double trigger system for IIT

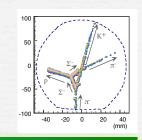
Requests & Works at J-PARC

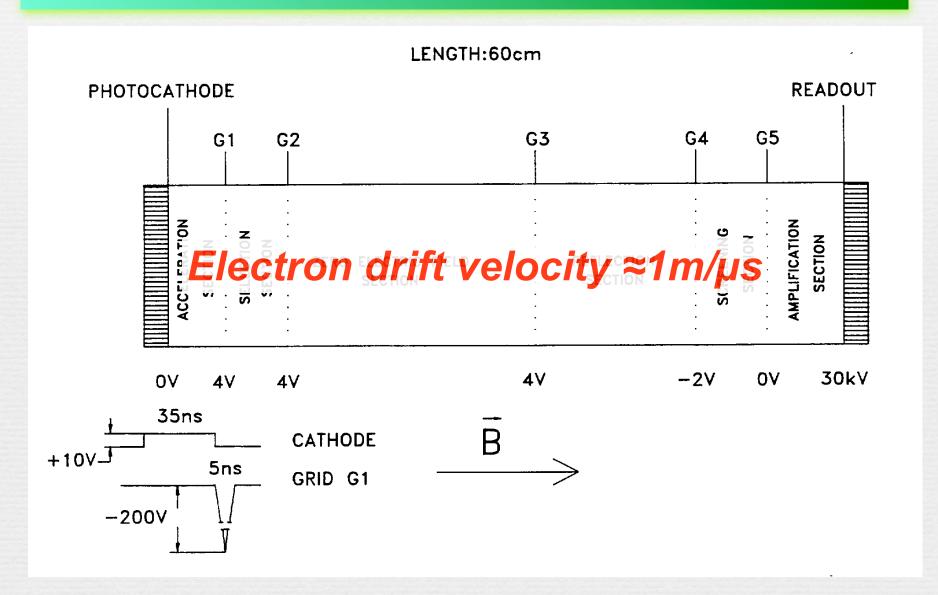

for $\Xi^-p(S=-2)$, Σ^+p and $\Lambda p(polarization obs.) — reasonably doable at J-PARC$

- ✓ Requests
 - > Separated beam line around 1.5 1.8 GeV/c
 - K^- intensity $10^7/\text{sec}$ with K/p > 1
 - Liquid hydrogen facility
- **Work**
 - Realistic Optimization of Setup
 - Background estimation (physical & instrumental)
 - Fast imaging device
 - Trigger consideration

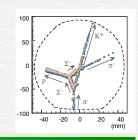
Improve "rate limit"

105 Hz -> 107(3) Hz

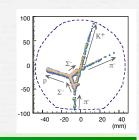

High-Speed Image Delay Tube - What is it ? -



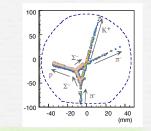
Prototypes


- ON THE OPTOELECTRONIC SCHEME OF A SCINTILLATING FIBRE TRACKING DETECTOR FOR FUTURE LARGE HADRON COLLIDER
 J.P.Fabre, T.Gys and M.Primout: CERN/EF/4147H/TG/mnb 8 November 1988
- THE BASIC PRINCIPLE OF A VACUUM IMAGE PIPELINE T. Gys: CERN/EF/4304H/TG/mnb 12 January 1989
- Conceptual design for an optelectric delay line
 J.P.Fabre, T.Gys, M.Primout and L.Van hamme: Revue Phys. Appl. 24(1989)1019
- OPTOELECTRONIC DELAY FOR THE READ-OUT OF PARTICLE TRACKS FROM SCINTILLATING FIBRES
 - T. Gys et al. : CERN/EF 89-25, DERN/LAA-SF91-3, CERN/DRDC 92-42
- OPTO-ELECTRIC DELAY TUBES
 T. Gys et al. : DERN/LAA/SF 90-20
- A high-speed gateable image pipeline Berkovski et. al. NIM A380(1996)537

High-Speed Image Delay Tube - What is it ? -

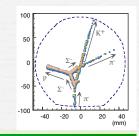


KEK - HSIDT (<u>High-Speed Image Delay Tube</u>)

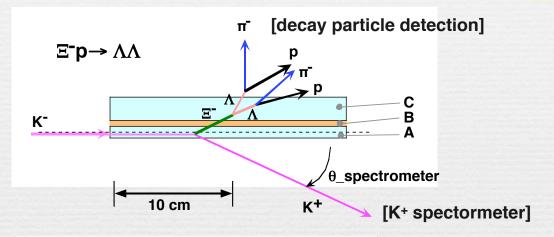


- 1. Visit Dr. T.Gys at CERN in June ... learn things and hints ...
- 2. examine the structure of a tube, and decide to assemble as a sectional detector ... drawing & drawing & ...
 - Input photocathode and output phosphor, grids, field-shaping electrodes, ceramic insulation, solenoid magnet, pulse generator, ...
- 3. now assembling and test will be started soon ...

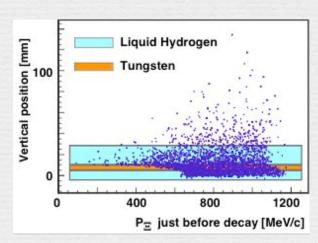
KEK - HSIDT (<u>High-Speed Image Delay Tube</u>)


Visit Dr. T.Gvs at CERN in June ... learn things and hints 2. ng 3.

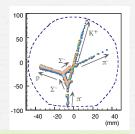
Yp scattering exp. at J-PARC

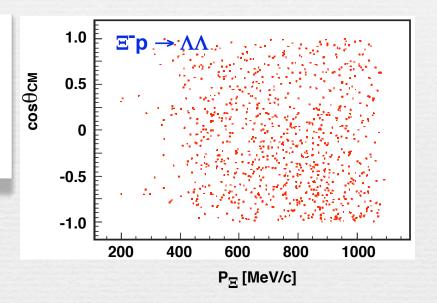

	Channels	Т	Observables
p,n	pp → pp pn → pn	1 1, 0	dσ/dΩ, Py, D, dσ/dΩ, Py, D,
Λ	$\Lambda p \rightarrow \Lambda p$	1/2	dσ/dΩ, Py, AyT, D
Σ+	$\Sigma^+ p \rightarrow \Sigma^+ p$	3/2	dσ/dΩ, Py, AyT, D
Σ-	$\begin{array}{c} \Sigma^{-} p \rightarrow \Sigma^{-} p \\ \Sigma^{-} p \rightarrow \Lambda n \end{array}$	3/2, 1/2 1/2	dσ/dΩ, Ay dσ/dΩ, Py
Ξ-	$\Xi^- p \rightarrow \Xi^- p$ $\Xi^- p \rightarrow \Lambda \Lambda$	1, 0 0	$d\sigma/d\Omega$, Py, AyT (, D) $d\sigma/d\Omega$, Py, AyT (, D)

Yp scattering exp. at J-PARC

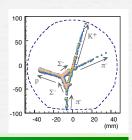


with a CDC tracking detector

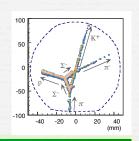

SciFi & HSIDT


• Target 5 cm wide × 20 cm long A: production 1 cm Liq. Hydrogen B: degrader 0.5 cm **Tungsten** C: scattering 2 cm Liq. Hydrogen K+ spectrometer θ _spectrometer ~ 25° at center • K- beam (assumption @ LOI) 107 K-/sec Intensity Momentum 1.7 GeV/c Size o horizontal 15 mm σ_vertical 1 mm

a simulation



• K- intensity	[s-1]	107
 Number of Hydrogen 	[/cm2]	8.5×10 ²³
· Spectrometer	[deg]	25
· Spectrometer TOF	[m]	5
· Trigger rate (K+)	[s ⁻¹]	11
• Momentum of Ξ -	[MeV/c]	300 - 1100


	Ξ - $p \rightarrow \Xi$ - p	Ξ - $p \rightarrow \Lambda\Lambda$
• reaction rate [s-1]	0.009	0.0043
• 100 days	78000	37000
 Detectable number 	2300	550

Summary

- Designing a Yp experiment
 - Realistic Optimization of Setup for selected Yp channel
 - Background estimation (physical & instrumental)
 - Fast imaging device
 - Trigger consideration
- High-Speed Image Delay Tube (made in Japan) will soon be available
 - Delay capability, Intrinsic time resolution of ≈10ns, Data reduction ≈10⁻³, Space resolution of ≤30 µm, Good efficiency ...
 - Next step: Fast readout device keeping good space resolution with large area

極限状態の物理

弾性散乱 ≈極低温反応

Yp弾性散乱 ≈これからの極低温反応@strangeness

"二回散乱"と"偏極"