C Hyperon-Proton Scattering at the J-PARC

- Motivation
 - historic background
 - YN scattering experiment at KEK-PS
 - ... and at J-PARC
- Objective
- Method
- High-Speed Image Delay Tube
 - What is it?
 - Characteristics & Performances expected
- a simulation

IEIRI Masaharu

これから研究会
09.02.21 @ Miyazaki
Historic Background

Experiment
- ('32 neutron)
- ('47 π⁺ - meson)
- pp, np scattering
- (YN scattering)
- ('74 J/ψ) (Hypernuclei)

Theory
- ('35 meson theory)
- '51 hard-core OPE @long-range
- ('64 Quark hypothesis)
- '77 H-particle
- QCM
- Inspired by SU(3)f
- NN&YN by Lattice... based on SU(2)/SU(3)f

Idea
- established

Support

(get the picture)
Available Yp scatt. Data [1]
- bubble chamber era '60-'70s -

✓ bubble chamber era '60-'70s

Numbers of data points in angular distributions:

<table>
<thead>
<tr>
<th>Channel</th>
<th>pp</th>
<th>pn</th>
<th>YN</th>
</tr>
</thead>
<tbody>
<tr>
<td>dσ/dΩ</td>
<td>2080</td>
<td>3777</td>
<td>23(±39)</td>
</tr>
<tr>
<td>P</td>
<td>1275</td>
<td>814</td>
<td>a few</td>
</tr>
<tr>
<td>Other</td>
<td>1444</td>
<td>304</td>
<td>0</td>
</tr>
</tbody>
</table>

from Arndt et al. PRD28(83)97

from Dover & Feshbach Ann.Phys.198(90)321
Available Yp scatt. Data [2]
- at 12 GeV KEK-PS -

☑ at 12 GeV KEK-PS

- E251, E289 for $d\sigma/d\Omega (\Sigma^+p & \Sigma^-p)$
- E452 for polarization ($\Sigma^+p & \Lambda p$)

(b) $\Sigma^+p \rightarrow \Sigma^+p$

350 $\leq P_{\text{lab}} \leq 750$ MeV/c

RGM-FSS $P_{\text{lab}}=450$ MeV/c
RGM-FSS2 $P_{\text{lab}}=450$ MeV/c

Ref. [12] (300 $< P_{\text{lab}} < 600$ MeV/c)
This work

E251, E289

E452

$\Sigma^-p \rightarrow \Sigma^-p$ elastic

400 $< P_{\Sigma^-} < 700$ MeV/c

Jülich
FSS

E289
Baryon-Baryon potential

\[V(r) \text{ [MeV]} \]

\[S_0 \]

-40 -20 0 20 40

\[\pi - \Sigma + \Sigma - \Sigma_0 \]

\[\Sigma^- \Sigma \Sigma^0 \Sigma^+ I_3 \]

\[n \rightarrow 0 \rightarrow p \]

\[\Sigma^- \Sigma^0 \Sigma^+ \]

\[\Sigma^- \Sigma^0 \Sigma^+ \]

OBE
- HC, \(\omega \), \(\rho, \sigma \), \(\pi \), \(\ldots \)

QCM
- (\(\lambda, \lambda \))\((\sigma, \sigma) \)
- Pauli
- Tokyo
- Kyoto
- Tubingen
- Flavor SU(3)
Baryon-Baryon potential

- **OBE**
 - Paris
 - Nijmegen
 - Bonn-Julich

- **QCM**
 - (l·σ)(s·σ)
 - Pauli
 - Tokyo
 - Kyoto
 - Tubingen

- **Flavor SU(3)**
Experimental Objectives at J-PARC

- S = -2

Anti-symmetric spin-orbit

\[M = a + c (\alpha_n^1 + \alpha_n^2) + b (\alpha_n^1 - \alpha_n^2) + m\alpha_n^1\alpha_n^2 + g(\alpha_p^1\alpha_p^2 + \alpha_K^1\alpha_K^2) + h(\alpha_p^1\alpha_p^2 - \alpha_K^1\alpha_K^2) \]

\[I_0 P_y = 1/4 \operatorname{Tr}(M M^T \sigma_n^1) = 2 \operatorname{Re}[(a+m)c^* + (a-m)b^*] \]

(\(I_0 A_y = 1/4 \operatorname{Tr}(M \sigma_n^2 M^T) = 2 \operatorname{Re}[(a+m)c^* - (a-m)b^*] \))
Calculation by Models

S=-2
\(\Xi^-p \rightarrow \Lambda \Lambda, \Xi^-p \rightarrow \Xi^-p \)

Polarization observables
(≈ Anti-symmetric spin-orbit)

\(\Sigma^+p \rightarrow \Sigma^+p \)
\(P_\Sigma(\theta) \)
\(\rho_\Sigma = 450 \text{ MeV/c} \)

\(\Xi^-p \rightarrow \Xi^-p \)
\(P_\Xi(\theta) \)

\(\Delta(\sigma) \approx 10\% \)

\(\Delta(\text{pol}) \approx \text{a few - 10\%} \)
“double” scattering & decay (self-polarimeter)

- Production $\pi^+ + p \rightarrow K^+ + \Sigma^+$ (CH)n
- Scattering $\Sigma^+ + p \rightarrow \Sigma^+ + p$ (CH)n
- Decay $\Sigma^+ \rightarrow p + \pi^0$ (51.57 %, $\alpha = -0.980$)
 $\Sigma^+ \rightarrow n + \pi^+$ (48.30 %, $\alpha = 0.068$)

Mean range of related charged particles...

- Σ^+ (incident) 8 mm
- Σ^+ (scattered) 5 mm
- p (recoil) 18 mm
- p (decay) 19 mm
- π^+ (decay) 44 mm
“double” scattering & polarimeter

The Polarimeter
“MUSASHI”

1982-1987
Experiments at KEK-PS

Heart of experiments (DUMAS & MUSASHI ≈ SciFi & IIT)

Scintillating Fiber (or Liquid Scintillator) with IIT-CCD Camera triggered by Spectrometer system
Experiments at KEK-PS

IIT & Triggers
- Phosphor Decay Time
 - a few µs
- Decision Time
 - several hundreds ns
- CCD image handling
 - several tens ms

Double trigger system for IIT

Beam rate ≤ 10^5Hz
Image rate ≤ 10Hz
Requests & Works at J-PARC

for $\Xi^-p(S=-2), \Sigma^+p$ and Λp (polarization obs.)
— reasonably doable at J-PARC

☑ Requests
 ▶ Separated beam line around 1.5 - 1.8 GeV/c
 ▶ K^- intensity 10^7/sec with $K/p > 1$
 ▶ Liquid hydrogen facility

☑ Work
 ▶ Realistic Optimization of Setup
 ▶ Background estimation (physical & instrumental)
 ▶ Fast imaging device
 ▶ Trigger consideration

Improve “rate limit”
10^5Hz \rightarrow $10^7(8)$Hz
Prototypes

- **ON THE OPTOELECTRONIC SCHEME OF A SCINTILLATING FIBRE TRACKING DETECTOR FOR FUTURE LARGE HADRON COLLIDER**
 J.P.Fabre, T.Gys and M.Primout: CERN/EF/4147H/TG/mnb 8 November 1988

- **THE BASIC PRINCIPLE OF A VACUUM IMAGE PIPELINE**

- Conceptual design for an optoelectric delay line

- **OPTOELECTRONIC DELAY FOR THE READ-OUT OF PARTICLE TRACKS FROM SCINTILLATING FIBRES**
 T. Gys et al.: CERN/EF 89-25, DERN/LAA-SF91-3, CERN/DRDC 92-42

- **OPTO-ELECTRIC DELAY TUBES**
 T. Gys et al.: DERN/LAA/SF 90-20

- **A high-speed gateable image pipeline**
 Berkovski et. al. NIM A380(1996)537
High-Speed Image Delay Tube

- What is it?

LENGTH: 60 cm

PHOTOCATHODE

G1 **G2** **G3** **G4** **G5**

READOUT

Electron drift velocity ≈ 1 m/µs
1. Visit Dr. T.Gys at CERN in June ... learn things and hints ...

2. examine the structure of a tube,
 and decide to assemble as a sectional detector
 ... drawing & drawing & ...

 ▶ Input photocathode and output phosphor, grids, field-shaping
 electrodes, ceramic insulation, solenoid magnet, pulse
 generator, ...

3. now assembling and test will be started soon ...
1. Visit Dr. T. Gys at CERN in June ... learn things and hints ...

2. examine the structure of a tube, and decide to assemble as a sectional detector ... drawing & drawing & ...

3. now assembling and test will be started soon ...
Yp scattering exp. at J-PARC

<table>
<thead>
<tr>
<th>Channels</th>
<th>T</th>
<th>Observables</th>
</tr>
</thead>
<tbody>
<tr>
<td>p,n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp → pp</td>
<td>1</td>
<td>dσ/dΩ, Py, D, ..</td>
</tr>
<tr>
<td>pn → pn</td>
<td>1, 0</td>
<td>dσ/dΩ, Py, D, ..</td>
</tr>
<tr>
<td>Λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ p → Λ p</td>
<td>1/2</td>
<td>dσ/dΩ, Py, AyT, D</td>
</tr>
<tr>
<td>Σ⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ⁺ p → Σ⁺ p</td>
<td>3/2</td>
<td>dσ/dΩ, Py, AyT, D</td>
</tr>
<tr>
<td>Σ⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ⁻ p → Σ⁻ p</td>
<td>3/2, 1/2</td>
<td>dσ/dΩ, Ay</td>
</tr>
<tr>
<td>Σ⁻ p → Λ n</td>
<td>1/2</td>
<td>dσ/dΩ, Py</td>
</tr>
<tr>
<td>Ξ⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ⁻ p → Ξ⁻ p</td>
<td>1, 0</td>
<td>dσ/dΩ, Py, AyT (, D)</td>
</tr>
<tr>
<td>Ξ⁻ p → Λ Λ</td>
<td>0</td>
<td>dσ/dΩ, Py, AyT (, D)</td>
</tr>
</tbody>
</table>
Yp scattering exp. at J-PARC

with a CDC tracking detector

SciFi & HSIDT

Y^-p \rightarrow \Lambda \Lambda

- Target 5 cm wide x 20 cm long
 - A: production 1 cm Liq. Hydrogen
 - B: degrader 0.5 cm Tungsten
 - C: scattering 2 cm Liq. Hydrogen

- K^+ spectrometer
 - \theta_{spectrometer} \sim 25^\circ at center

- K^- beam (assumption @ LOI)
 - Intensity \(10^7\) K/sec
 - Momentum 1.7 GeV/c
 - Size
 - \sigma_{horizontal} 15 mm
 - \sigma_{vertical} 1 mm

\begin{tabular}{c|c|c}
 & Liquid Hydrogen & Tungsten \\
 P_\Xi just before decay [MeV/c] & & \\
 \hline
 0 & & \\
 400 & & \\
 800 & & \\
 1200 & & \\
\end{tabular}
a simulation

- K- intensity $[s^{-1}]$ 107
- Number of Hydrogen $/[cm^2]$ 8.5\times1023
- Spectrometer $[deg]$ 25
- Spectrometer TOF $[m]$ 5
- Trigger rate (K$^+$) $[s^{-1}]$ 11
- Momentum of Ξ^- $[MeV/c]$ 300 - 1100

$\Xi^-p \rightarrow \Lambda\Lambda$

- reaction rate $[s^{-1}]$ 0.009 0.0043
- 100 days 78000 37000
- Detectable number 2300 550
Designing a Yp experiment

- Realistic Optimization of Setup for selected Yp channel
- Background estimation (physical & instrumental)
- Fast imaging device
- Trigger consideration

High-Speed Image Delay Tube (made in Japan) will soon be available

- Delay capability, Intrinsic time resolution of ≈10ns,
 Data reduction ≈10^{-3}, Space resolution of ≤30µm,
 Good efficiency ...

- Next step: Fast readout device keeping good space resolution
 with large area
極限状態の物理

弾性散乱
≈極低温反応

Yp弾性散乱
≈これからの極低温反応@strangeness

“二回散乱”と“偏極”