Alpha Inelastic Scattering and Cluster Structures in Light Nuclei KAWABATA Takahiro Department of Physics, Kyoto University #### **Contents** - Introduction - α cluster structure in light nuclei. - E0 strengths and α cluster structure. - Inelastic α Scattering and Cluster structure in ¹³C - Folding model calculation and MD analysis. - Comparison with SM and CM calculations. - Search for α Cluster States in ²⁴Mg - Summary #### Introduction #### Two different pictures of Nuclear Structure Single-particle orbit in the mean-field potential. Strong correlation between nucleons. Magic numbers (2, 8, 20,). Cluster consists of several nucleons. Describes well single-particle excited states. Clusters are weakly bound. It is important to study appearance and disappearance of the cluster correlation for understanding the complex quantum many-body system "Atomic Nucleus". #### Cluster States in N = 4n Nuclei Alpha clustering is an important concept in nuclear physics for light nuclei. Alpha cluster structure is expected to emerge near the α -decay threshold energy in N = 4n nuclei. The 0^+_2 state at $E_x = 7.65$ MeV in 12 C is a famous 3α cluster state. A novel concept to describe the 0^+_2 state is proposed: α Condensation. T. Yamada and P. Schuck, Euro. Phys. J. A 26, 185 (2005). α -condensed state where three alpha particles occupy the lowest s-orbit. Dilute-gas state of alpha particles. Large RMS. Mass number Similar states are predicted in other self-conjugate N = 4n nuclei. ### Cluster Structure in $N \neq 4n$ nuclei Excess particles might change cluster structure in $N \neq 4n$ nuclei. - Excitation energy, width, decay scheme - > Cluster molecule with excess neutrons. - \triangleright Appearance and disappearance of α correlation. - > Cluster condensation in a boson-fermion mixture. Systematic study on the alpha cluster structure in $N \neq 4n$ nuclei is important. # E0 Strengths and α Cluster Structure Large E0 strength could be a signature of spatially developed α cluster states. T. Kawabata et al., Phys. Lett. B 646, 6 (2007). 0^{+} , state in ${}^{12}\text{C}$: B(E0; IS) = $121 \pm 9 \text{ fm}^{4}$ Single Particle Unit: $B(E0; IS)_{s. p.} \sim 40 \text{ fm}^4$ - ✓ SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit. - ✓ GS contains CM-like component due to possible alpha correlation. E0 strength is a key observable to examine α cluster structure. ### Cluster State in ¹¹B A dilute $2\alpha + t$ cluster state is excited by E0 transition with B(E0;IS) = 96 ± 16 fm⁴. T. Kawabata et al., Phys. Lett. B 646, 6 (2007). - 3/2⁻₃ state in ¹¹B is strongly excited by the E0 transition in the (d,d') reaction. - Analogies between the 3/2⁻₃ state and the 0⁺₂ state in ¹²C (dilute-gas-like 3α cluster state) have been observed. - ➤ Similar excitation energies and E0 strengths. - \triangleright Locates near the α decay thresholds. - ➤ Not predicted in SM calculations. - AMD (VAP) successfully describes the $3/2^{-}_{3}$ state with a dilute $2\alpha + t$ cluster wave function. E0 measurement is a new useful spectroscopic tool to search for α cluster states. # Inelastic Alpha Scattering Inelastic α scattering is a good probe for nuclear excitation strengths. - Simple reaction mechanism - Good linearity between $d\sigma/d\Omega$ and $B(\hat{o})$. $$\frac{d\sigma}{d\Omega}(\Delta J^{\pi}) \approx KN \left| J(q) \right|^2 B(\Theta)$$ - Folding model gives a reasonable description of $d\sigma/d\Omega$. - Selectivity for the $\Delta T = 0$ and natural-parity transitions. - Multiple decomposition analysis is useful to separate ΔJ^{π} . $$\frac{d\sigma}{d\Omega}^{\text{exp}} = \sum_{\Delta J^{\pi}} A(\Delta J^{\pi}) \frac{d\sigma}{d\Omega} (\Delta J^{\pi})^{\text{calc}}$$ We measured inelastic α scattering to extract IS E0 strengths and to examine cluster structures in light nuclei. # Inelastic α Scattering and Cluster Structure in ¹³C # Experiment Experiment was performed at RCNP, Osaka University. Background-free measurement at extremely forward angles Ring Cyclotron N-BLP superconducting solenoid magnets AVF Cyclotron Inelastic Scattering from ¹³C | | | Present | | | |---------|----------------|----------|----------|--| | E_{x} | ${f J}^\pi$ | B(E0;IS) | B(E2;IS) | | | (MeV) | | (fm^4) | (fm^4) | | | 3.68 | $3/2^{-}_{1}$ | | 47±5 | | | 7.55 | 5/2-1 | -CIIII | 61 ± 6 | | | 8.86 | $1/2_{12}^{-}$ | 37 ± 6 | | | | 11.08 | $1/2^{-}_{3}$ | 18±3 | | | | 12.5 | $1/2^{-}_{4}$ | 24 ± 4 | | | The three $1/2^-$ states at 8.86, 11.08, and 12.5 MeV are strongly excited by the E0 transitions. \rightarrow Possible candidates for spatially developed α cluster states. # Comparison with Charge Exchange Reaction ¹³C(³He,tp) reaction at 150 MeV/u was measured by H. Fujimura *et al*. Good mirror symmetric relation. | • | \mathbf{J}^{π} | E_{x} (13C) | E_{x} (13N) | B(GT) | |-----------|----------------------|-----------------|-----------------|-----------------| | _ | | (MeV) | (MeV) | | | | $1/2^{-}_{2}$ | 8.86 | 8.92 | 0.16 ± 0.02 | | | $1/2^{-}_{3}$ | 11.08 | 10.83 | 0.12 ± 0.01 | | _ | $1/2^{-}_{4}$ | 12.5 | 13.5 | 0.12 ± 0.1 | | J^{π} | 0.00 | (0^{+}) | 4.44 (2+) | 7.65 (0+) | | 1/2- | $\frac{1}{2}$ 0.60 = | ± 0.09 (| 0.30 ± 0.05 | | | 1/2- | 0.05 = | ±0.01 (| 0.54 ± 0.09 | 0.43 ± 0.16 | Small decay branch of $1/2^{-}_{3}$ to the ground state in 12 C. Large decay branch of $1/2^{-4}$ to the Hoyle state. # Comparison with Shell Model Experimental results were compared with SM using SFO interaction. #### SM Calculation: Interaction: SFO (T. Suzuki et al., PRC 67 (2003) 044302.) Configuration Space: psd (2ħω) | | | Expe | Experiment | | SM (SFO) | | |--------------------|----|------------------|-----------------|------------------|----------|--| | \mathbf{J}^{π} | Ελ | $B(E\lambda;IS)$ | B(GT) | $B(E\lambda;IS)$ | B(GT) | | | | | (fm^4) | | (fm^4) | | | | $3/2^{-}_{1}$ | E2 | 47 ± 5 | 1.06 ± 0.02 | 46 | 2.11 | | | 5/2-1 | E2 | 61±6 | | 44 | | | | $1/2^{-}_{2}$ | E0 | 37 ± 6 | 0.16 ± 0.02 | 0.01 | 0.57 | | | $1/2^{-}_{3}$ | E0 | 18±3 | 0.12 ± 0.01 | 0.08 | 0.10 | | | $1/2^{-}_{4}$ | E0 | 24±4 | 0.12 ± 0.1 | 0.18 | 0.01 | | Predicted level structure is reasonable. GT and E2 strengths are also reasonable. → Coexistence of CM and SM components? ## Comparison with 3α+n OCM Calculation $3\alpha + n$ OCM calculation was performed by T. Yamada *et al*. Four 1/2⁻ states are successfully predicted by OCM. Search for α Cluster States in ²⁴Mg #### α Condensed States in Heavier N = 4n Nuclei α condensed states in ⁸Be, ¹²C, and ¹⁶O (?) seem to be established. α condensed states in heavier nuclei (A<40) are theoretically predicted. However.... Short range α-α attraction Long range Coulomb repulsion Energy and width of dilute $N\alpha$ state increase with N. Experimental identification of $N\alpha$ condensed state in heavier nuclei might be difficult at the moment. ## α Condensed State with Core Nucleus Possibility of α condensed states with core nuclei is proposed. Attractive potential for α clusters provided by the core nucleus might stabilize the α condensed state in heavy nuclei. N. Itagaki *et al.*, Phys. Rev. C **75**, 037303 (2007). Schuck-type wave function for ²⁴Mg $$\Phi = A \prod_{i=1}^{6} d\overrightarrow{R_i} G_i(\overrightarrow{R_i}) \exp \left[-\overrightarrow{R_i}^2 / \sigma^2 \right]$$ A: Antisymmetrizer $G_i(\overline{R_i})$: Wave function for the i-th α cluster \overline{R}_i : i-th α -cluster center (Randamly generated) σ : Oscillator parameter for the α condensation The 16 O core is expressed by the tetrahedron configuration of 4α with the relative distance of 1 fm. The α condensed state is predicted at $E_x=12.2$ MeV with B(E0; IS) = 168.4 fm⁴. A new experiment to search for the α condensed state near 2α + ^{16}O threshold in ^{24}Mg was performed at RCNP. # **Preliminary Results** $^{24}{\rm Mg}(\alpha,\alpha')$ reaction has been measured to search for the $^{16}{\rm O} + 2\alpha$ cluster states. - Many known and unknown monopole states are observed. - Detailed comparison with theoretical calculations are desired. ### Decay Particles from α Condensed States Decay-particle measurement provides structural information. - Complementary information for the E0 strength is expected. - $-\alpha$ cluster state should prefer to decay into the alpha-decay channel. - Data analysis is still going on. The results will be presented elsewhere! # Summary Cluster structures in light nuclei ¹³C and ²⁴Mg were studied by measuring inelastic α scattering. - E0 strength is a key observable. - Folding model calculation and MD analysis have been performed. - Several candidates for the spatially developed cluster states were found. - Complementary information is expected from the decaying-particle measurement.