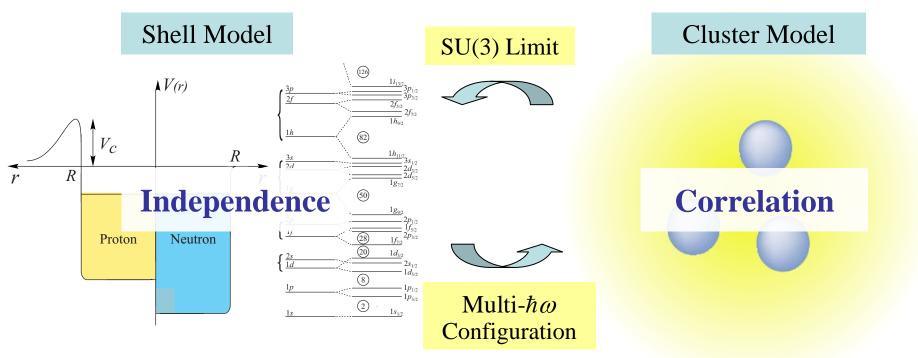
Alpha Inelastic Scattering and Cluster Structures in Light Nuclei

KAWABATA Takahiro


Department of Physics, Kyoto University

Contents

- Introduction
 - α cluster structure in light nuclei.
 - E0 strengths and α cluster structure.
- Inelastic α Scattering and Cluster structure in ¹³C
 - Folding model calculation and MD analysis.
 - Comparison with SM and CM calculations.
- Search for α Cluster States in ²⁴Mg
- Summary

Introduction

Two different pictures of Nuclear Structure

Single-particle orbit in the mean-field potential.

Strong correlation between nucleons.

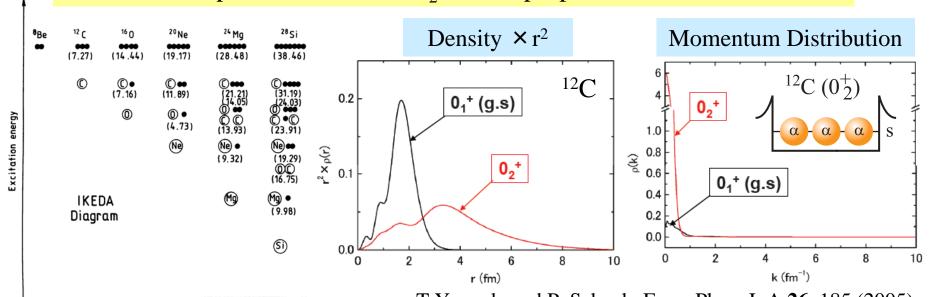
Magic numbers (2, 8, 20,).

Cluster consists of several nucleons.

Describes well single-particle excited states.

Clusters are weakly bound.

It is important to study appearance and disappearance of the cluster correlation for understanding the complex quantum many-body system "Atomic Nucleus".


Cluster States in N = 4n Nuclei

Alpha clustering is an important concept in nuclear physics for light nuclei.

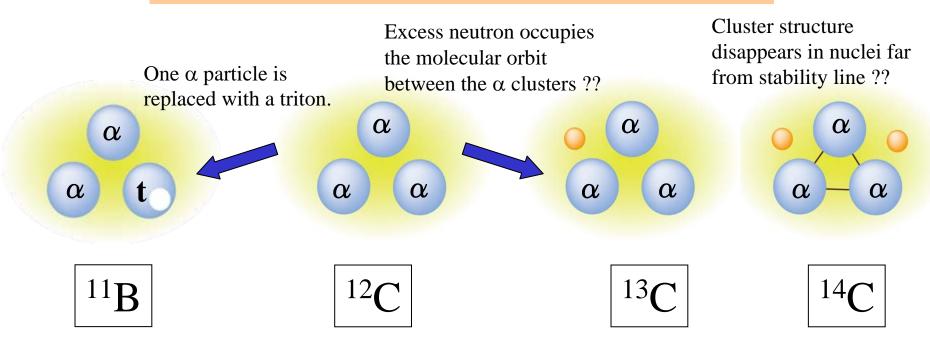
Alpha cluster structure is expected to emerge near the α -decay threshold energy in N = 4n nuclei.

The 0^+_2 state at $E_x = 7.65$ MeV in 12 C is a famous 3α cluster state.

A novel concept to describe the 0^+_2 state is proposed: α Condensation.

T. Yamada and P. Schuck, Euro. Phys. J. A 26, 185 (2005).

 α -condensed state where three alpha particles occupy the lowest s-orbit. Dilute-gas state of alpha particles. Large RMS.


Mass number

Similar states are predicted in other self-conjugate N = 4n nuclei.

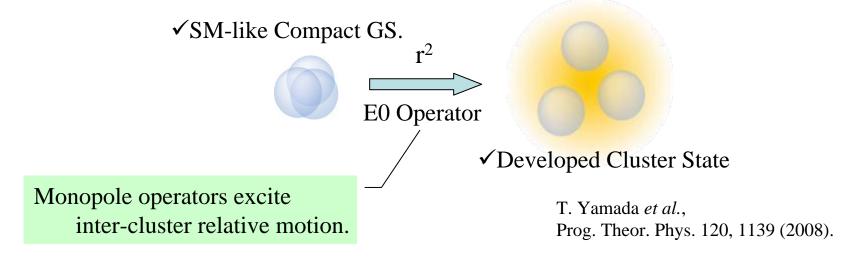
Cluster Structure in $N \neq 4n$ nuclei

Excess particles might change cluster structure in $N \neq 4n$ nuclei.

- Excitation energy, width, decay scheme
- > Cluster molecule with excess neutrons.
- \triangleright Appearance and disappearance of α correlation.
- > Cluster condensation in a boson-fermion mixture.

Systematic study on the alpha cluster structure in $N \neq 4n$ nuclei is important.

E0 Strengths and α Cluster Structure

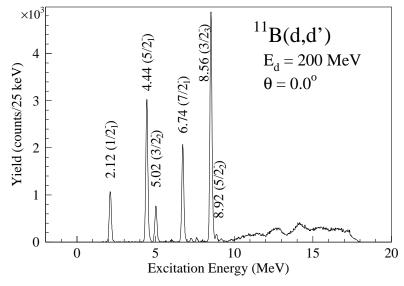

Large E0 strength could be a signature of spatially developed α cluster states.

T. Kawabata et al., Phys. Lett. B 646, 6 (2007).

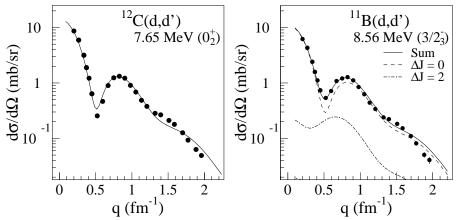
 0^{+} , state in ${}^{12}\text{C}$: B(E0; IS) = $121 \pm 9 \text{ fm}^{4}$

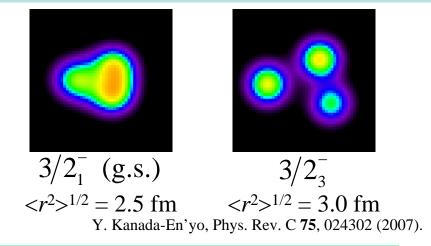
Single Particle Unit: $B(E0; IS)_{s. p.} \sim 40 \text{ fm}^4$

- ✓ SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
- ✓ GS contains CM-like component due to possible alpha correlation.



E0 strength is a key observable to examine α cluster structure.


Cluster State in ¹¹B

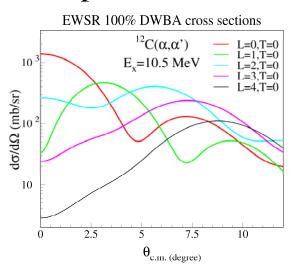

A dilute $2\alpha + t$ cluster state is excited by E0 transition with B(E0;IS) = 96 ± 16 fm⁴.

T. Kawabata et al., Phys. Lett. B 646, 6 (2007).

- 3/2⁻₃ state in ¹¹B is strongly excited by the E0 transition in the (d,d') reaction.
- Analogies between the 3/2⁻₃ state and the 0⁺₂ state in ¹²C (dilute-gas-like 3α cluster state) have been observed.
 - ➤ Similar excitation energies and E0 strengths.
 - \triangleright Locates near the α decay thresholds.
 - ➤ Not predicted in SM calculations.
- AMD (VAP) successfully describes the $3/2^{-}_{3}$ state with a dilute $2\alpha + t$ cluster wave function.

E0 measurement is a new useful spectroscopic tool to search for α cluster states.

Inelastic Alpha Scattering


Inelastic α scattering is a good probe for nuclear excitation strengths.

- Simple reaction mechanism
 - Good linearity between $d\sigma/d\Omega$ and $B(\hat{o})$.

$$\frac{d\sigma}{d\Omega}(\Delta J^{\pi}) \approx KN \left| J(q) \right|^2 B(\Theta)$$

- Folding model gives a reasonable description of $d\sigma/d\Omega$.
- Selectivity for the $\Delta T = 0$ and natural-parity transitions.
- Multiple decomposition analysis is useful to separate ΔJ^{π} .

$$\frac{d\sigma}{d\Omega}^{\text{exp}} = \sum_{\Delta J^{\pi}} A(\Delta J^{\pi}) \frac{d\sigma}{d\Omega} (\Delta J^{\pi})^{\text{calc}}$$

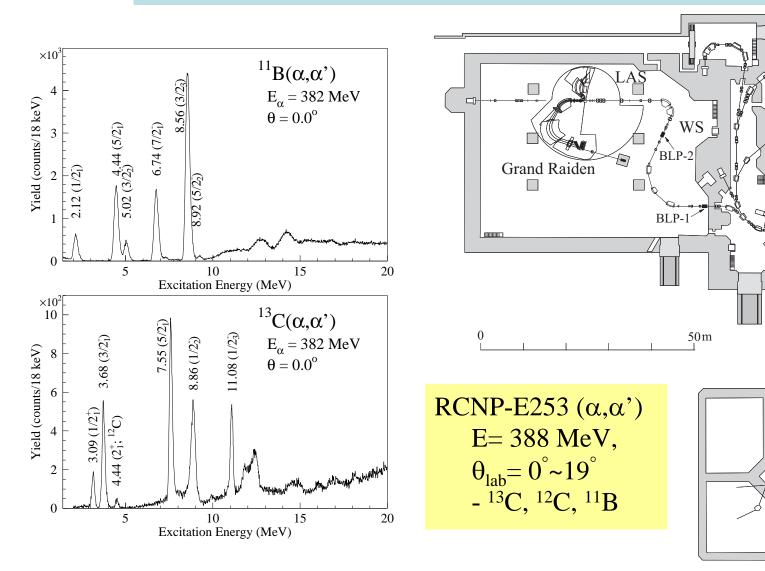
We measured inelastic α scattering to extract IS E0 strengths and to examine cluster structures in light nuclei.

Inelastic α Scattering and Cluster Structure in ¹³C

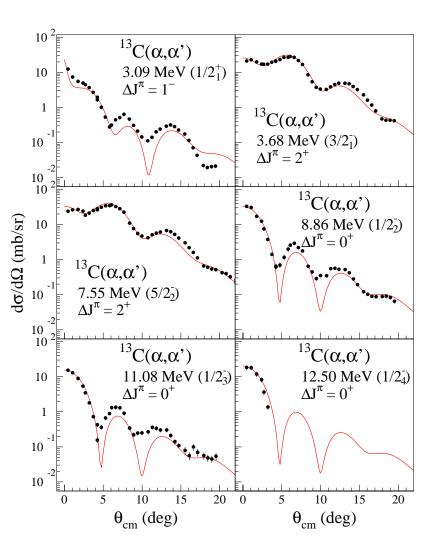
Experiment

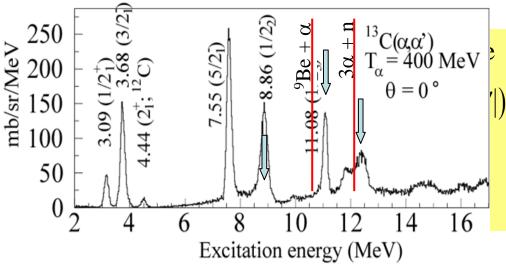
Experiment was performed at RCNP, Osaka University.

Background-free measurement at extremely forward angles


Ring Cyclotron

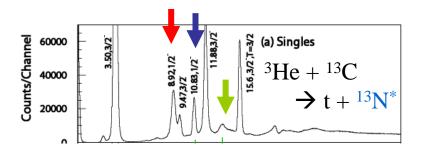
N-BLP


superconducting

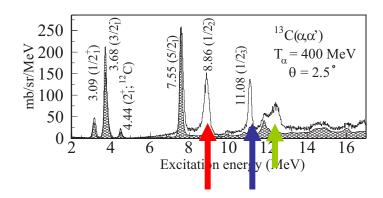

solenoid magnets

AVF Cyclotron

Inelastic Scattering from ¹³C



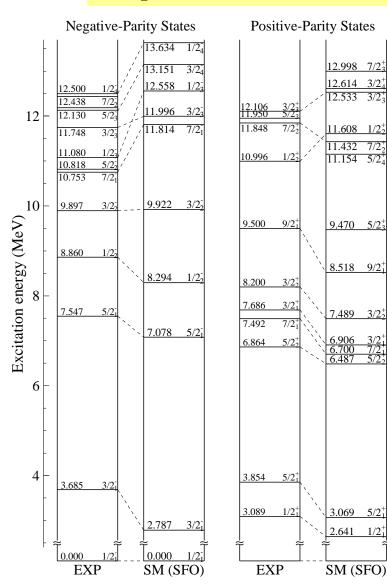
		Present		
E_{x}	${f J}^\pi$	B(E0;IS)	B(E2;IS)	
(MeV)		(fm^4)	(fm^4)	
3.68	$3/2^{-}_{1}$		47±5	
7.55	5/2-1	-CIIII	61 ± 6	
8.86	$1/2_{12}^{-}$	37 ± 6		
11.08	$1/2^{-}_{3}$	18±3		
12.5	$1/2^{-}_{4}$	24 ± 4		


The three $1/2^-$ states at 8.86, 11.08, and 12.5 MeV are strongly excited by the E0 transitions. \rightarrow Possible candidates for spatially developed α cluster states.

Comparison with Charge Exchange Reaction

¹³C(³He,tp) reaction at 150 MeV/u was measured by H. Fujimura *et al*.

Good mirror symmetric relation.


•	\mathbf{J}^{π}	E_{x} (13C)	E_{x} (13N)	B(GT)
_		(MeV)	(MeV)	
	$1/2^{-}_{2}$	8.86	8.92	0.16 ± 0.02
	$1/2^{-}_{3}$	11.08	10.83	0.12 ± 0.01
_	$1/2^{-}_{4}$	12.5	13.5	0.12 ± 0.1
J^{π}	0.00	(0^{+})	4.44 (2+)	7.65 (0+)
1/2-	$\frac{1}{2}$ 0.60 =	± 0.09 (0.30 ± 0.05	
1/2-	0.05 =	±0.01 (0.54 ± 0.09	0.43 ± 0.16

Small decay branch of $1/2^{-}_{3}$ to the ground state in 12 C.

Large decay branch of $1/2^{-4}$ to the Hoyle state.

Comparison with Shell Model

Experimental results were compared with SM using SFO interaction.

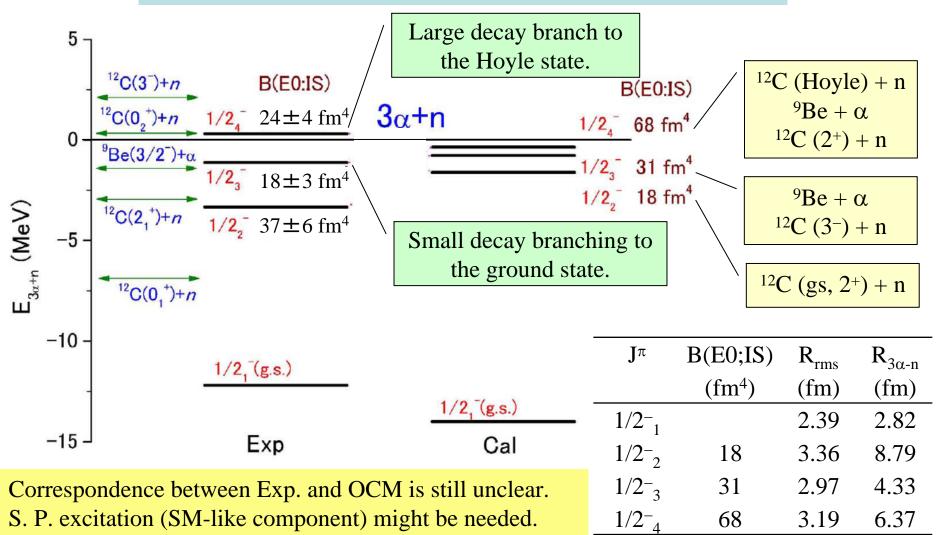
SM Calculation:

Interaction: SFO (T. Suzuki et al., PRC 67 (2003) 044302.)

Configuration Space: psd (2ħω)

		Expe	Experiment		SM (SFO)	
\mathbf{J}^{π}	Ελ	$B(E\lambda;IS)$	B(GT)	$B(E\lambda;IS)$	B(GT)	
		(fm^4)		(fm^4)		
$3/2^{-}_{1}$	E2	47 ± 5	1.06 ± 0.02	46	2.11	
5/2-1	E2	61±6		44		
$1/2^{-}_{2}$	E0	37 ± 6	0.16 ± 0.02	0.01	0.57	
$1/2^{-}_{3}$	E0	18±3	0.12 ± 0.01	0.08	0.10	
$1/2^{-}_{4}$	E0	24±4	0.12 ± 0.1	0.18	0.01	

Predicted level structure is reasonable.


GT and E2 strengths are also reasonable.

→ Coexistence of CM and SM components?

Comparison with 3α+n OCM Calculation

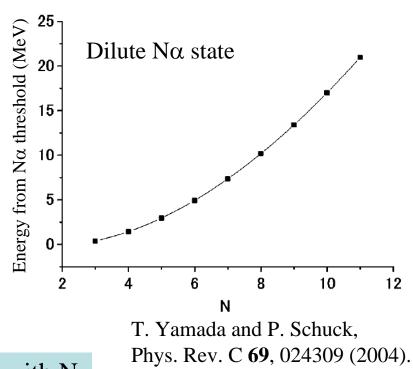
 $3\alpha + n$ OCM calculation was performed by T. Yamada *et al*.

Four 1/2⁻ states are successfully predicted by OCM.

Search for α Cluster States in ²⁴Mg

α Condensed States in Heavier N = 4n Nuclei

α condensed states in ⁸Be, ¹²C, and ¹⁶O (?) seem to be established.


α condensed states in heavier nuclei (A<40) are theoretically predicted.

However....

Short range α-α attraction Long range Coulomb repulsion

Energy and width of dilute $N\alpha$ state increase with N.

Experimental identification of $N\alpha$ condensed state in heavier nuclei might be difficult at the moment.

α Condensed State with Core Nucleus

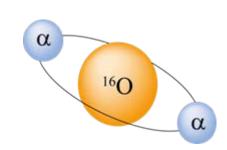
Possibility of α condensed states with core nuclei is proposed.

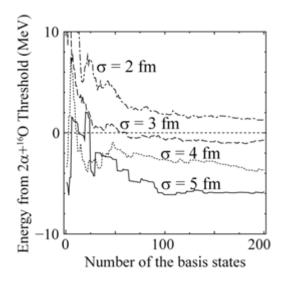
Attractive potential for α clusters provided by the core nucleus might stabilize the α condensed state in heavy nuclei.

N. Itagaki *et al.*, Phys. Rev. C **75**, 037303 (2007).

Schuck-type wave function for ²⁴Mg

$$\Phi = A \prod_{i=1}^{6} d\overrightarrow{R_i} G_i(\overrightarrow{R_i}) \exp \left[-\overrightarrow{R_i}^2 / \sigma^2 \right]$$

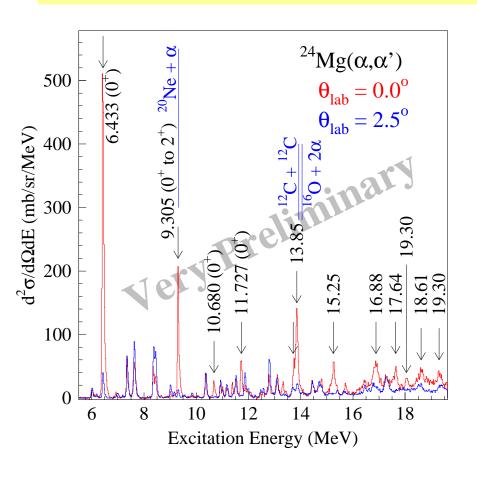

A: Antisymmetrizer

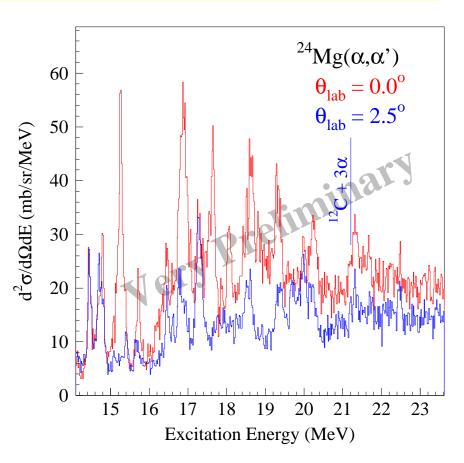

 $G_i(\overline{R_i})$: Wave function for the i-th α cluster

 \overline{R}_i : i-th α -cluster center (Randamly generated)

 σ : Oscillator parameter for the α condensation

The 16 O core is expressed by the tetrahedron configuration of 4α with the relative distance of 1 fm.

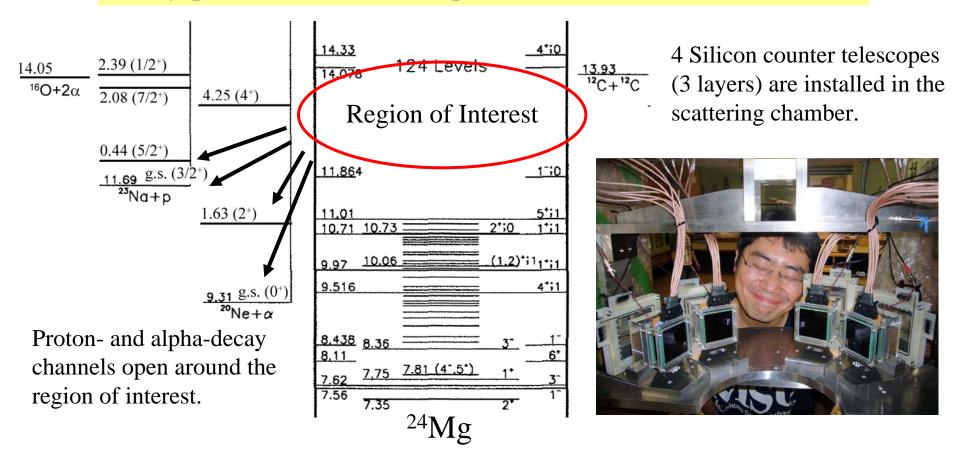



The α condensed state is predicted at $E_x=12.2$ MeV with B(E0; IS) = 168.4 fm⁴.

A new experiment to search for the α condensed state near 2α + ^{16}O threshold in ^{24}Mg was performed at RCNP.

Preliminary Results

 $^{24}{\rm Mg}(\alpha,\alpha')$ reaction has been measured to search for the $^{16}{\rm O} + 2\alpha$ cluster states.



- Many known and unknown monopole states are observed.
- Detailed comparison with theoretical calculations are desired.

Decay Particles from α Condensed States

Decay-particle measurement provides structural information.

- Complementary information for the E0 strength is expected.
 - $-\alpha$ cluster state should prefer to decay into the alpha-decay channel.
- Data analysis is still going on. The results will be presented elsewhere!

Summary

Cluster structures in light nuclei ¹³C and ²⁴Mg were studied by measuring inelastic α scattering.

- E0 strength is a key observable.
- Folding model calculation and MD analysis have been performed.
- Several candidates for the spatially developed cluster states were found.
- Complementary information is expected from the decaying-particle measurement.