



## Sum Rule and Giant Resonances

=0 L=1



- Collective motion
- Common to many-body quantum system
- Unique feature of nucleus
  - Nucleus consists of nucleons with
    - Spin 1/2
    - · Isospin 1/2
      - → 2×2=4 degrees of freedom
- Resonance strength depends on
  - Number of participating nucleons
  - Size of the system
    - → Sum-rule depending on g.s. properties
- Compare GR strength to sum-rule
  - Residual interaction (distribution)
  - Quark degrees of freedom (quenching)









### Spin-Isospin Modes and Sum Rule

#### Spin-isospin transition operators

$$\begin{array}{l} \text{Spin-scalar} \quad O_J^{\tau^\pm} = \sum_{i=1}^A r_i^L Y_L(\hat{r}_i) \boldsymbol{t}_i^\pm \\ \\ \text{Spin-vector} \quad O_J^{\sigma\tau^\pm} = \sum_{i=1}^A r_i^L \left[ Y_L(\hat{r}_i) \otimes \vec{\boldsymbol{\sigma}}_i \right]_J \boldsymbol{t}_i^\pm \end{array}$$

#### Model-independent sum-rule

$$S_J^- - S_J^+ = rac{(2J+1)}{4\pi} \left( N \langle r_n^{-2J} 
angle - Z \langle r_p^{-2J} 
angle 
ight) \ ag{$\sim$S-$_J for N$$\infty$Z}$$
 is and GT sum rule

#### Fermi and GT sum rule

$$S^{-}(\mathbf{F}) - S^{+}(\mathbf{F}) = \mathbf{N} - \mathbf{Z}$$

#### **Gamow-Teller**

$$S^{-}(GT) - S^{+}(GT) = 3(N - Z)$$

50% quenching of GTGR 2p2h (Config. Mix.) Quark (Δ)



### $\pi + \rho + g'$ model and $\Delta$ Effects

 $V_{
m eff}~({
m MeV}\,{
m fm}^3)$ 

Effective interaction

200

100

-100

-200

#### **Effective Interaction**

$$V_{\text{eff}} = V_L + V_T$$

#### Longitudinal $(\pi)$

Transverse (p)

- $\pi + \rho + g' \text{ model}$ 

  - Spin-longitudinal  $m{V_L} = m{V_L^{\pi}} + m{V_L^{ ext{LM}}}$  Spin-transverse  $m{V_T} = m{V_T^{
    ho}} + m{V_T^{ ext{LM}}}$
- NN(p-h) effective Interaction

$$V_L(q,\omega) = rac{f_{\pi NN}^2}{m_\pi^2} \left(rac{q^2}{\omega^2 - q^2 - m_\pi^2} \Gamma_{\pi NN}^2 + g_{NN}'
ight) ( au_1 \cdot au_2) (\sigma_1 \cdot \hat{q}) (\sigma_2 \cdot \hat{q})$$

 $V_T = V_T^{\ 
ho} + V_T^{\ 
m IM}$ 

$$V_T(q,\omega) = rac{f_{\pi NN}^2}{m_\pi^2} egin{pmatrix} \pi ext{-exchange} & ext{Short-range repulsion} \ C_
horac{q^2}{\omega^2-q^2-m_
ho^2} \Gamma_{
ho NN}^2 + g_{NN}' \end{pmatrix} ( au_1\cdot au_2)(\sigma_1 imes\hat q)(\sigma_2 imes\hat q)$$

ρ-exchange
 Extension to N+Δ system for LM interaction

# W.

### GT Strength and LM Parameters

K.Yako et al., PLB 615(2005)193. T.W. et al., PRC 72(2005)067303.

- g' dependence on GTGR
  - RPA(1p1h) by Ichimura group
  - GTGR peak position
    - Strongly depends on g' NN

$$g_{NN}^{\prime}=0.6\pm0.1$$

- Weak g'<sub>N∆</sub> dependence
- g'<sub>N</sub> dep. on GT quenching Q
  - $Q=0.86\pm0.07$ 
    - 2p2h effects are dominant
  - Q evaluated in RPA
    - Strongly depends on g'<sub>N∆</sub>

$$g'_{N\Delta} = 0.35 \pm 0.16$$

- How about other modes (resonances)
  - Quenching (?)
  - Distribution (Information on residual Int.)







### Correlation and $\Delta$ Effects on SDR

#### · SDR in Oth

- $E_x(2^-) < E_x(1^-) < E_x(0^-)$
- Reflecting shell-structure
  - B.E.(j<sub>></sub>) > B.E.(j<sub><</sub>)

#### SDR in RPA

- NO free parameters
  - Same g' determined by GT
- $E_x(2^-) < E_x(1^-) < E_x(0^-)$ 
  - Same as 0<sup>th</sup>
- Move strengths to higher E<sub>x</sub>
  - · Repulsive p-h int.

#### A effects

Very small in SDR

#### <sup>208</sup>Pb(p,n)



### Previous Studies of SDR

Multipole decomposition of 90Zr(3He,t) at 900 MeV

Exp. Fit DW calc. 
$$\sigma(\omega, \theta) = a_0(\omega) \sigma_{L=0}(\theta) + a_1(\omega) \sigma_{L=1}(\theta) + a_2(\omega) \sigma_{L=2}(\theta)$$
-  $\theta$  = 0.25° ~4.25°

- SDR cross section
  - Quenching (~30%) from RPA(1p1h)
    - 2p2h (Configuration mixing)
    - Other mechanism
  - Spin-parities could NOT be separated
    - Similar angular distributions of 0-,1-,2-
- NOT conclusive for quenching
  - Rough estimation for distortion effects (NOT in full DWIA)
  - RPA in g' only (w/o  $\pi/\rho$ -exchange)
  - Angular distributions in (<sup>3</sup>He,t) are steep





### MD Analysis for SD -Difficulties and Solutions-

- Multipole Decomposition Analysis (MDA)
  - L-dependence of angular distributions
    - Insensitive to  $J^{\pi}$
- MDA for GT
  - 0+ and 1+ for L=0
    - O+ strength → IAS (Easily removed)
- MDA for SD
  - 0<sup>-</sup>, 1<sup>-</sup>, 2<sup>-</sup> for L=1
    - Separation is difficult with  $\sigma$
  - GDR and SDR for 1- could not be separated
- Polarization transfer D<sub>ii</sub> for SD

|          | D <sub>NN</sub> (4.0°) | D <sub>LL</sub> (4.0°) |  |
|----------|------------------------|------------------------|--|
| 0- (SDR) | -1.00                  | -1.00                  |  |
| 2- (SDR) | -0.17                  | -0.41                  |  |
| 1- (SDR) | +0.19                  | -0.16                  |  |
| 1- (GDR) | +0.96                  | +0.95                  |  |



### MDA with D<sub>ii</sub>

- ✓ Separate 0-,1-,2 ✓ Separate GDR and SDR

### **Experiment at RCNP**

#### Thanks to M. Dozono









BLP1 & BLP2

SOL1 & SOL2

- 295 MeV Polarized protons
  - Predominantly excite GT and SDR
- Beam polarization
  - Control with 2-sets of solenoids
  - Measure with 2-sets of BLP by p-p

- Beam swinger
  - Cover  $\theta = 0^{\circ} \sim 13.4^{\circ}$
- Measured data (33 data sets)
  - $\sigma$ : 13 angles
  - $A_v$ : 12 angles
  - D<sub>NN</sub>: 4 angles(0,4,7,10deg)
  - D<sub>LL</sub>: 1 angle(0deg)
  - P: 3 angles(4,7,10deg)

### Results of MDA ~First MDA with Polarization Data~

#### MDA (up to 7+(L=6))

- Both cross section and polarization data are well reproduced
- At 0°: Significant L=0 (GT+IVSM) up to 50 MeV
- At 4°: Significant L=1 (SDR) around 20 and 35 MeV (2p2h?)







### Gamow-Teller Strength B(GT)

- MDA could not separate GT from IVSM
  - Assumption

Proportionality between GT/IVSM strength and cross section

 $\sigma(\mathrm{GT}+\mathrm{IVSM})=\hat{\sigma}_{\mathrm{GT}}[B(\mathrm{GT})+B(\mathrm{IVSM})]F(q,\omega)$ 

**MDA** 

GT unit c.s.

- Weak interference between GT and IVSM
- Similar quenching effects on IVSM

$$ightharpoonup rac{\sigma^{
m Exp}({
m GT+IVSM})}{\sigma^{
m Theor}({
m GT+IVSM})} = rac{B^{
m Exp}({
m GT})}{B^{
m Theor}({
m GT})}$$

Reliability for theoretical calculations

$$\hat{\sigma}_{\mathrm{GT}}^{\mathrm{Exp}} = 1.88 \pm 0.17\,\mathrm{mb/sr}$$
 $\hat{\sigma}_{\mathrm{GT}}^{\mathrm{Theor}} = 1.94 \pm 0.16\,\mathrm{mb/sr}$ 

Theoretical calculations are reliable  $\rightarrow$  Systematic uncertainty of B(GT)  $\sim$  10%





#### Experimental B(GT)

- Strength up to 50 MeV
- Not significant compared with <sup>90</sup>Nb

$$S^{-}(GT) = 115 \pm 1(stat) \pm 7(MDA)$$
  
=  $87 \pm 5\%$ 

- Configuration mixing is dominant
  - Quark (Δ) effect is small
- Consistent with Q=0.86 for 90Nb
  - S+(GT) is expected to be small
- Theoretical calc. with 2p2h
  - S-(GT) is consistent
  - Different B(GT) distributions
    - Exp: Concentrate in GR region
    - Theory: Significant spread



S.Drozdz et al., PLB 189, 271(1987) N.D.Dang et al., PRL 79,1638(1997)

Further studies are required for conclusions



### **SD Unit Cross Section**

C. Gaarde et al., NPA 369, 258 (1981) K. Yako et al., PRC 74, 051303(R)(2006)

#### Relation between SD cross section and SD strength B(SD)

Proportionality ansatz

$$\frac{\sigma_{\mathrm{SD},J^{\pi}}(4.0^{\circ})}{\mathrm{MDA}} = \frac{\hat{\sigma}_{\mathrm{SD},J^{\pi}}}{\mathrm{Unit\ c.s.\ Strength}}$$

- Proportionality : ~10%
- Differences from constant unit c.s.
  - q-dep. (q is a function of  $\omega$ )
  - Structure (radial W.F.)
  - Tensor int. (structure dep.)

$$\hat{\sigma}_{\mathrm{SD},J^{\pi}} \longrightarrow \hat{\sigma}_{\mathrm{SD},J^{\pi}}(\omega)$$

based on DWIA+RPA calc.

- Unit c.s. depends on DWIA inputs
  - Optical potential, etc.
    - · Uncertainty : ~10%



# **SD Strength Distributions**\*Comparison with RPA\*

#### Experimental B(SD)

- Asymmetric single peak for 1- & 2-
  - Tail to higher E<sub>x</sub> up to 40 MeV
- Fragmented 0- strength

#### Theoretical calc, in RPA

- Phenomenological spreading width
  - Effective inclusion of 2p2h (in part)
- Strength distribution
  - Total strength is consistent
  - 0- strength is severely fragmented
- Sequence of SDR peak
  - Exp:  $E_x(2^-) \sim E_x(1^-) \sim E_x(0^-)$
  - Theory:  $E_x(2^-) < E_x(1^-) < E_x(0^-)$
- Comment on tensor correlations
  - Repulsive effect on 1<sup>-</sup>: N.G. (attractive effect?)





### Experimental B(SD) from MDA

- Uncertainties
  - · : Statistical uncertainty
  - · \_\_\_: MDA uncertainty
  - $\sim$ 10% systematic uncertainty from  $\sigma_{SD}$

#### Comparison with RPA

- 0⁻: Slightly small (NOT significant)
- 1<sup>-</sup>: Consistent (Softened)
- 2<sup>-</sup>: Consistent (Hardened)
- Total: Consistent (Similar distribution)



#### SD strengths are NOT quenched

- $\triangleright$  SD distribution of each  $J^{\pi}$  is different from theoretical predictions
- $\triangleright$  J<sup> $\pi$ </sup> decomposition in MDA with polarization data is successful

## Comparison with HF+RPA

#### HF+RPA calculations by Sagawa-san's group

- Skyrme interaction: SLy4, SIII,SGII,Skl3
  - 0- and 1- strengths are smeared/fragmented compared with calc.
  - 1- strength is significantly softened
  - Integrated strengths (each  $J^{\pi}$ , Total) are consistent







### Summary and Future Perspective

- First attempt to perform MDA with polarization data
  - Successful separation of SDR into each  $J^{\pi}$  component
- Information on SD strengths
  - SD strengths are NOT quenched
    - 0- strength : Fragmented
    - 1 strength: Softened (Inconsistent with tensor effects)
    - · 2- strength: Roughly consistent
- **Perspective (In Progress)** 
  - MDA with "complete" polarization data
    - 0-,1-,2- Separation becomes more reliable
    - We can check the reliability of MDA
  - RCNP-E317: 12C(p,n)12N

Excitation energy of <sup>12</sup>N Complete polarization data at 0°, 2°, 4° 6°, 9°, 12° (6 angles) Establish method of  $J^{\pi}$  decomposition in continuum by polarization data

