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Abstract— A novel complementary filter for three-

dimensional (3D) attitude estimation is proposed. In order to

deals with the nonlinearity of 3D attitude, the conventional

complementary filter integrated the measured angular velocity

corrected by the vector measurement, but it ignored the

sensor dynamics which causes the lag. Authors’ previous work

compensated the sensor dynamics based on the idea that it can

be divided into the linear transfer function and the nonlinear

coordinate transformation. The properness and stability of

the total transfer function are guaranteed by the designed

filter inserted between the linear and nonlinear part. However,

the disturbance strongly affects the accuracy of the azimuth

angle due to the coordinate transformation. This paper aims

to improve the estimation accuracy by combining the idea

of correcting the measured angular velocity by the vector

measurement and the sensor dynamics compensation only with

the proper and stable transfer function. The characteristics

of the proposed method are the following two points: 1) the

relaxation of the complementary condition in order to make

the non-proper and unstable function proper and stable, and

2) the filtering of the estimated vector by the sensor dynamics

instead of the filtering of the measured vector by the inverse

dynamics in order to avoid the magnification of the high

frequency noise. Through the experiment for the fast and

irregular motion under 5[Hz], the validity of the proposed

method is verified.

I. INTRODUCTION

Fast and irregular attitude variation of a mobile robot with

short control period, such as a humanoid robot, is the target

to be estimated for a high-rate feedback control. From the

requirement that the measurement period is the same as the

control rate, inertial sensors and magnetometer are available

as attitude sensors. However, it is difficult to estimate the

attitude accurately by the homogeneous sensor. The rate

gyroscope, which is one of inertial sensors, can measure the

attitude variation. However, its output includes the bias, so

that the integral of the output suffers from the error accumu-

lation. Another one of inertial sensors is the inclinometer. It

measures the inclination from the direction of the gravity, but

its dynamics causes the lag. The magnetometer can estimate
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the azimuth angle based on the comparison between its

current output and the geomagnetism or its initial output.

However, its measurement is disturbed by the magnetic field

of the surrounding environment. Therefore, the combination

of the heterogeneous sensors such as MARG (Magnetic,

Angular Rate, and Gravity ) sensor is required.

Many attitude estimation techniques using MARG sen-

sor were proposed. Those are roughly divided into two

types: the Kalman filtering approach [1], [2], [3] and the

complementary filtering approach[4], [5], [6], [7], [8], [9].

Although those filters are the same as the result[10], designs

of them are different. The Kalman filter[11] is designed

in the time domain based on the noise property of each

signal. However, its design is difficult. On the other hand,

the complementary filter is designed in the frequency domain

based on the frequency property of each signal which is

empirically known, so that it is easier to design it than

Kalman filter.

In order to apply the complementary filtering approach to

the three-dimensional (3D) attitude estimation, it is necessary

to take the nonlinearity of the attitude into consideration. For

the nonlinearity, some methods which integrate the measured

angular velocity corrected by the vector measurement were

proposed [5], [6], [7], [8]. Madgwick et al. [7] designed a

filter based on the gradient direction of the error between the

measured and estimated vector. Mahony et al. [8] formulated

three types of nonlinear complementary filters which use the

attitude matrix as the attitude representation and discussed

the stability of them. Those filters assume that the sensor

dynamics is negligible, but the dynamics of each sensor are

not always complementary. Thus, in the target frequency

domain to be measured, there are some frequency domains

where the accuracy is degraded. In contrast, some attitude

estimators with the sensor dynamics compensation were

proposed [12], [9]. In the authors’ previous work [9], the

nonlinear dynamics of each sensor is divided into the linear

transfer function and the nonlinear coordinate transformation,

and each property is compensated. The inverse transfer func-

tion tends to be non-proper and unstable, so that the designed

filter is inserted between the linear and nonlinear part in

order to make the total transfer function for each sensor

proper and stable. However, the azimuth angle computed

by the coordinate transformation is strongly affected by the

disturbance included in the magnetometer’s output.

The goal of this paper is to estimate 3D attitude accu-

rately in the target frequency domain. For this purpose, a

complementary filter which fuses the idea of correcting the

measured angular velocity by the vector measurement and
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Fig. 1. Nonlinear complementary filter with the sensor dynamics compen-
sation for the attitude estimation

that of the sensor dynamics compensation is proposed. In

order to realize the dynamics compensation only by the

proper and stable transfer function, the proposed method is

designed based on the following two ideas. The first idea

is the relaxation of the complementary condition based on

the assumption that the entire transfer function is proper

and stable in the entire frequency domain as long as it

strictly satisfy the complementary condition only in the target

frequency domain (Fig.1(b)). The second is to filter not the

measured vector by the inverse function but the estimated

vector fed back to the error computation by the nominal

sensor dynamics (Fig. 1(c)). In particular, the second idea is

effective in preventing the magnification of high frequency

noise included in the inclinometer and the magnetometer.

II. THE COMPLEMENTARY FILTER FOR ATTITUDE

ESTIMATION

The complementary filter estimates the original signal

from the fusion of some signals extracted by the filter

which satisfies the complementary condition in the frequency

domain. Let Fi(s) be the frequency filter for i-th sensor

output Xi(s). The original signal Y (s) is estimated as

Ŷ (s) =

n
∑

i=1

Fi(s)Xi(s), (1)

where n means the total number of sensors. ∗̂ denotes the

estimate of ∗ hereafter. Fi(s) satisfies the complementary

condition, namely,

n
∑

i=1

Fi(s) = 1, (2)

where 1 is the identity matrix.

Let us consider the case that the inclination angle θ is

estimated by the rate gyroscope and the inclinometer. Based

on Eq. (1), θ is estimated as

θ̂ = F1(s)
1

s
ω̃ + F2(s)θ̃. (3)

where ω̃ and θ̃ are the measured angular velocity and the

measured angle, respectively, and is represented as

ω̃ = G1(s)sθ + w1, (4)

θ̃ = G2(s)θ + w2, (5)

G1(s) and G2(s) are the dynamics of the rate gyroscope

and the inclinometer, w1 and w2 are the noise of the rate

gyroscope and the inclinometer, F1(s) and F2(s) are the

filter for ω̃ and θ̃, respectively. F1(s) is designed as a high-

pass filter (HPF) since 1

s
ω̃ is reliable in the high frequency

domain. On the other hand, F2(s) is designed as a low-pass

filter (LPF) based on the complementary condition.

In the case of that ω̃ includes the bias offset, one option

to design the filter is to design F1(s)
1

s
as a band-pass filter,

namely,

θ̂ =
s2

kI + kP s+ s2
1

s
ω̃ +

kI + kP s

kI + kP s+ s2
θ̃, (6)

where kI and kP are the design parameter. Let b̂ be the

estimate of the gyroscope bias b, the differential equations,

which are equivalent to Eq. (6), are written as

˙̂
θ = ω̃ − b̂+ kPωmes, (7)

˙̂
b = −kIωmes, (8)

ωmes = θ̃ − θ̂. (9)



Eqs. (7)-(9) mean that the attitude is estimated by integrating

the measured angular velocity corrected by the error be-

tween the measurement and the estimate. Some nonlinear

complementary filter [7], [8] are the expansion of Eqs. (7)-

(9). In particular, the explicit complementary filter (ECF)

proposed by Mahony et al. [8] has a simple computation of

the error between the measurement and the estimate, and is

represented as

˙̂
R = R̂

[(

ω̃ − b̂+ kPωmes

)

×
]

(10)

˙̂
b = −kIωmes (11)

ωmes =

n
∑

i=2

kiṽi × v̂i (12)

where R ∈ SO(3) is the attitude matrix, b ∈ R
3 is the

gyroscope bias, ω̃ ∈ R
3 is the measured angular velocity,

and ṽi ∈ R
3 is the vector measurement such as the direction

of the gravity and the geomagnetism. Note that the vector

measurement is linearly treated in Eq. (12). [∗×] is a skew-

symmetric matrix which means the cross product by ∗. v̂i ∈
R

3 is the estimate of the vector measurement, for instance,

the estimated direction of the gravity and the geomagnetism

are written as

v̂2 = R̂T g

‖g‖
(13)

v̂3 = R̂T m0

‖m0‖
(14)

where g = [0 0 g]T and m0 are the acceleration due to

the gravity and the direction of the magnetism at the initial

time, respectively. ki is the weight for ṽi× v̂i. ECF assumes

that the sensor dynamics can be ignored, but those dynamics

affect the estimation accuracy in fact.

Although the attitude is represented by the 1D angle,

Baerveldt et al. [12] compensated the sensor dynamics as

θ̂ = F1(s)
1

s
G̃−1

1 (s)ω̃ + F2(s)G̃
−1
2 (s)θ̃. (15)

where G̃1(s) and G̃2(s) are the nominal transfer function of

the rate gyroscope and the inclinometer, respectively. How-

ever, it is difficult to simply apply it to 3D attitude estimation

due to that the nonlinearity of 3D attitude affects the sensor

dynamics. For this problem, the authors [9] proposed a 3D

attitude estimator which combines the output of the rate gyro-

scope, the inclinometer, and the magnetometer. The authors’

previous method deals with the nonlinear sensor dynamics

by dividing it into the nonlinear and linear part. The former

part is the nonlinear coordinate transformation which can

be derived from the relationship between the sensor output

and the attitude representation theoretically. The latter part

is the linear transfer function which can be identified by

the frequency response. The inverse transfer function tends

to be non-proper and unstable, so that the designed filter is

inserted between the nonlinear and linear part to make the

transfer function proper and stable. However, the disturbance

included in the magnetometer’s output strongly affects the

azimuth angle computed by the coordinate transformation.

III. THE NONLINEAR COMPLEMENTARY FILTER WITH

SENSOR DYNAMICS COMPENSATION

To summarize the above, ECF is affected by the sensor dy-

namics but it can linearly treat the magnetism measurement

without the transformation. On the other hand, the authors’

previous method can compensate the sensor dynamics but its

azimuth angle computation is disturbed by the magnetometer

noise. Therefore, this paper aims to improve the estimation

accuracy by fusing the idea of ECF and that of the dynamics

compensation. Focusing on the similarity of Eqs. (7)-(9) and

ECF, the proposed filter is designed to expand 1D attitude

estimator to 3D attitude estimator.

As shown in Fig. 1(a), the simplest idea to compensate

the sensor dynamics is to use the inverse transfer function

directly as

˙̂
θ = Ω̃− b̂+ kPωmes, (16)

˙̂
b = −kIωmes, (17)

Ω̃ = G̃−1
1 (s)ω̃, (18)

ωmes = G̃−1
2 (s)θ̃ − θ̂. (19)

However, the nominal inverse transfer functions G̃−1
1 (s) and

G̃−1
2 (s) tend to be non-proper and unstable. In order to use

only the proper and stable transfer function, we focus on

the complementary condition. The entire transfer function

F0(s) must satisfy the complementary condition Eq. (2) in

the target frequency domain, but it do not have to do in the

entire frequency domain. Namely, F0(s) is allowed to be the

proper and stable one in the entire frequency domain as long

as F0(s) = 1 in the target frequency domain. Therefore, the

complementary condition is relaxed as

n
∑

i=1

Fi(s) = F0(s). (20)

From this idea, G̃−1
1 (s) and G̃−1

2 (s) in Eqs. (18) and (19)

are replaced by the proper and stable transfer function

F0(s)G
−1
1 (s) and F0(s)G

−1
2 (s) as

Ω̃ = F0(s)G̃
−1
1 (s)ω̃, (21)

ωmes = F0(s)G̃
−1
2 (s)θ̃ − θ̂. (22)

However, when the cut-off frequency of G−1
2 (s) is much

lower than that of F0(s), the magnification of the high

frequency noise is not negligible (Fig.1(b)). In order to avoid

the magnification, ωmes is computed based on the filtering

of not the measurement by the inverse transfer function but

the estimate by the nominal transfer function, namely,

ωmes = F0(s)θ̃ − G̃2(s)θ̂. (23)

By substituting Eq. (5) to Eq. (23), it is easily verified that

the sensor noise w2 is filtered only by F0(s). The designed

1D attitude estimator consisting of Eqs. (16), (17), (21) and
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(23) is equivalent to the following complementary filter:

θ̂ = F0

s2

G̃2(s)kI + G̃2(s)kP s+ s2

1

s
ω̃

+ F0(s)
G̃2(s)kI + G̃2(s)kP s

G̃2(s)kI + G̃2(s)kP s+ s2
G̃−1

2 (s)θ̃. (24)

As well as Eqs. (4) and (5), ω̃ and ṽi (i = 2, · · · , n) are

represented as

ω̃ = G1(s)ω +w1, (25)

ṽi = Gi(s)vi +wi, (i = 2, · · · , n), (26)

where wi (i = 1, · · · , n) is the white noise, G1(s) and

Gi(s) (i = 2, · · · , n) are the transfer function of the rate

gyroscope and i-th sensor which outputs the measurement

vector, respectively. Finally, 1D attitude estimator is ex-

panded to 3D attitude estimator as

˙̂
R = R̂

[(

Ω̃− b̂+ kPωmes

)

×
]

, (27)

˙̂
b = −kIωmes, (28)

Ω̃ = F0(s)G̃
−1
1 (s)ω̃, (29)

ωmes =

n
∑

i=2

ki (F0(s)ṽi)×
(

G̃i(s)v̂i

)

, (30)

where F0(s) is the entire transfer function, G̃1(s) and G̃i(s)
(i = 2, · · · , n) are the identified nominal transfer function

of the rate gyroscope and i-th sensor which outputs the

measurement vector, respectively. Eq. (29) indicates that

F0(s) is designed to make F0(s)G̃
−1
1 (s) proper and stable.

The quaternion form of the proposed method is shown in

Appendix A.

IV. EVALUATION BY THE EXPERIMENT

A. Set up

The validity of the proposed method is evaluated by

the experiment. The overview of the experimental machine

is shown in Fig. 2. It is designed based on the gimbal

mechanism and can rotate three axes independently. All axes

are orthogonal to each other when the angle of each axis is

equal to zero. As well as the authors’ previous work [9], three

1-axis rate gyroscope CRS07-11S (Silicon Sensing Systems

Japan), a 2-axis inclinometer X3M (US Digital), and a 3-

axis magnetometer AMI304 (Aichi Micro Intelligent) are

employed as the rate gyroscope, the inclinometer, and the

magnetometer, respectively.

B. The identification of the sensor dynamics

In order to implement the proposed filter, it is necessary

to identify the sensor dynamics of each sensor. The nominal

dynamics of the rate gyroscope and the magnetometer have

already obtained in the authors’ previous work [9], so that

this paper uses the following transfer function as the nominal

one of the rate gyroscope G̃1(s) and the magnetometer

G̃3(s),

G̃1(s) =







1.035686
1+0.004112s

−0.025885
1+0.004112s

0.005136
1+0.004112s

0.034362
1+0.004177s

1.070075
1+0.004177s

−0.009853
1+0.004177s

−0.038275
1+0.004858s

0.029495
1+0.004858s

1.075213
1+0.004858s






, (31)

G̃3(s) = diag{1.0, 1.048, 0.980}, (32)

where diag{d1, · · · , dn} means the diagonal matrix which

diagonal components are d1, · · · dn.

On the other hand, since the dynamics of the gravity

direction computed from the inclinometer’s output have not

obtained yet, it is necessary to identify it afresh. From the

viewpoint of the implementation, this paper identifies it in

the discrete time based on auto-regressive exogenous (ARX)

model. Let ∆T the sampling time, ARX model with respect

to the gravity direction is represented as

A(z)ṽ2,k = B(z)v2,k +w2, (33)

where the subscript k means the index of the time k∆T .

A(z) and B(z) are the matrices which component is repre-

sented by the polynomials with respect to the shift operator

z, and correspond to the denominator and numerator of

the transfer function, respectively. This paper assumed that

A(z) and B(z) are the diagonal matrices. v2 and ṽ2 are

the true gravity direction and the gravity direction from the

inclinometer, respectively. In the identification, the gravity

direction from encoders attached on the experimental ma-

chine is substituted for v2. The identification result is written

as

G̃2(z) = diag{G̃2,1(z), G̃2,2(z), G̃2,3(z)}, (34)
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Fig. 4. The enlarged view of an example of the estimation result by the
proposed method from 10.0[s] to 20.0[s]. (Gray line is the ground truth,
and red line is the proposed method.)

where

G̃2,1(z) =
−0.0789 + 0.0094z−1 + 0.0963z−2

1.0− 0.5108z−1 − 0.4653z−2
, (35)

G̃2,2(z) =
−0.0471 + 0.0086z−1 + 0.0629z−2

1.0− 0.5039z−1 − 0.4771z−2
, (36)

G̃2,3(z) =
0.0184 + 0.0251z−1 + 0.0333z−2

1.0− 0.4619z−1 − 0.4623z−2
. (37)

Fig. 3 shows the frequency response of G̃2(z). In the

frequency responses of G̃2,1(z) and G̃2,2(z), the lag occurs

over about 0.1[Hz].

C. Experimental result

The following rotations are input to the motor of the test

bed as the fast and irregular motion:

qi(t) =

5
∑

j=1

(aij sin(2πfijt) + bij cos(2πfijt)) , (i = 1, 2, 3),

where aij[deg] and bij[deg] are the amplitude of the sine and

cosine wave, respectively, and are determined randomly. In

order to spread the frequency fij on the frequency domain

under 5[Hz], fij is determined as

fij ∼ j + 0.1DU(10) + 0.01DU(10), (38)
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Fig. 5. The enlarged view of an example of the estimation errors from
10.0[s] to 20.0[s]. (Red line is the proposed method, green line is the
authors’ previous method, blue line is ECF, and purple line is Pro. wo.
EVF.)

where DU(N) means a discrete uniform distribution which

range is from 0 to N . The sampling time and the total time

are set to 3[ms] and 30[s], respectively.

In the experiment, the following methods are compared:

• The authors’ previous method [9] (Previous)

• Explicit complementary filter proposed by Mahony et

al.[8] (ECF)

• The proposed method without filtering the estimated

vector by the nominal dynamics ( Pro. wo. EVF )

• The proposed method (Proposed)

Instead of Eq. (30), Pro. wo. EVF uses the following equa-

tion:

ωmes =

n
∑

i=2

ki

(

F0(s)G̃
−1

i (s)ṽi

)

× v̂i. (39)

F0 in Pro. wo. EVF and Proposed are designed as

F0 =
2πf0

2πf0 + s
1, (40)

where f0 is the cut-off frequency and is determined such that

f0 is about three time of the cut-off frequency of G1(s),
namely, f0 = 90.0[Hz]. All transfer functions used in Pro.



TABLE I

ROOT-MEAN SQUARE ERRORS OF THE ESTIMATED ANGLES

Inclination Azimuth
Method θ1 [deg] θ2 [deg] φ [deg]

Previous 2.94 2.38 4.38

ECF 3.07 2.34 3.05

Pro. wo. EVF 4.01 3.05 3.62

Proposed 2.69 1.99 2.81

wo. EVF and Proposed were discretized by the bilinear

transformation. In order to exclude the effect of tuning from

the estimation, we tuned kP and kI of ECF, Pro. wo. EVF

and Proposed 80,000 times under the condition that both k2
and k3 of them are fixed as 0.5, and selected the set of kP
and kI which outputs the best result for each data obtained

by experiments. Similarly, parameters of Previous are also

selected.

Table I shows the root-mean-square error (RMSE) of the

result. RMSE of each angle is computed as

RMSE∗ =

√

√

√

√

1

NTND

NT
∑

i=1

ND
∑

j=1

e2
∗,ij , (∗ = θ1, θ2, ψ),

where NT and ND are total number of trials and data,

respectively. In this paper, they are set as NT = 4，ND =
3000. eθ1,ij , eθ2,ij and eψ,ij are the error of θ1, θ2 and ψ at

j∆T in ith trial, respectively. An example of the estimation

result by the proposed method is plotted in Fig. 4, and that of

the estimation errors is plotted in Fig. 5. From the result, the

inclination angle estimated by Previous is better than ECF,

but its azimuth angle estimation is the worst compared with

the other method due to the coordinate transformation. On

the other hand, the estimation accuracy of the inclination

angle estimated by Pro. wo. EVF is lower than that of

ECF. This result shows that the magnification of the high

frequency noise is more effective to the estimation accu-

racy than the dynamics compensation. Compared with other

methods, the proposed method shows the best estimation

result in all angles. Therefore, the combination of correcting

the measured angular velocity by the vector measurement

and the dynamics compensation is valid for the attitude

estimation, and it is verified that the combination can be

implemented by the relaxed complementary condition and

the estimated vector filtered by the sensor dynamics.

V. CONCLUSION

This paper proposes a novel nonlinear complementary

filter for 3D attitude estimation of the fast and irregular

attitude variation. The proposed method is designed based on

the scheme of ECF, and compensates the sensor dynamics by

only using the proper and stable transfer functions. Focusing

on the condition of the entire transfer function, the inverse

transfer function, which tends to be non-proper and unstable,

is made proper and stable by the fusing it with the entire

transfer function. The usage of the inverse transfer function

causes the magnification of the high frequency noise, so that

the estimate fed back to the error computation is filtered by

the sensor dynamics instead of filtering the measurement by

the inverse function. Through the experiment for the fast and

irregular motion under 5[Hz], it is verified that the proposed

method can improve the estimation accuracy.

APPENDIX

A. The proposed method represented by the quaternion

In order to avoid the singularity problem, the quaternion

is often used as the attitude, so that this section represents

the proposed method by the quaternion. Let q be the quater-

nion corresponding to the attitude matrix R, the quaternion

differentiation is represented as

q̇ =
1

2
q ⊗ψ (ω) (41)

where the operator ⊗ denotes the quaternion product, and

ψ(∗) means the quaternion corresponds to a 3D vector ∗.

From Eq. (41), the quaternion form of the proposed method

consists of Eqs. (28)-(30) and the following equation.

˙̂q =
1

2
q̂ ⊗ψ

(

Ω̃− b̂+ kPωmes

)

. (42)
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