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Abstract— A novel Kalman filter to estimate position of a
biped robot is proposed. It combines the kinematics and the
double-integral of acceleration, only using internal sensors and
achieving high-rate estimation. The kinematics computation is
rooted to the anchoring pivot, which is the most invariant point
in the foot with respect to the ground. The idea is the same with
the authors previous method, but the estimation accuracy has
been largely improved by referring to the ground reaction force.
Namely, the anchoring pivot is estimated based on both the
velocity information and the force information. The efficacy of
the proposed method is verified through simulations of walking
and hopping motions.

I. INTRODUCTION

A high-rate position control of legged robots requires

an accurate position estimation at the same or higher rate.

Present external sensors such as cameras[1], laser range

finders[2] and a combination of them[3] are not available

for this purpose due to their low sampling rate. On the other

hand, internal sensors such as encoders and accelerometers

can measure physical quantities faster than the above external

sensors, so they possibly work with a technique to estimate

by information only from internal sensors, namely, dead

reckoning.

In the field of legged robots, the kinematics computation,

which one can know the relative location of the robot body

with respect to the supporting foot through and thus we

call the foot-based kinematics, hereafter, is used[4], [5].

However, its accuracy is easily lowered when the supporting

foot rolls or rotates. Furthermore, it does not work when the

robot hops. Nishiwaki et al.[6] used the zero-moment point

(ZMP[7]) to correct the posture error caused by unexpected

rotation due to the topography, but its accuracy depends on

the performance of the controller. Another option is to use an

accelerometer[8], the double-integral of which provides the

position information regardless to the foot contact condition,

though it suffers from the error accumulation. In order to

improve the accuracy of the estimation, some methods to use

Kalman filter[9], [10], [11], [12], [13], [14] were proposed.

Chilian et al.[9] and Bloesch et al.[10] assumed that the

foot contacts to the ground at the point or the foot was a

small hemisphere shape, so that they cannot be applied to

robots with a large foot, which are supposed to work in a
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standing posture. Xinjilefu et al.[11] designed an extended

Kalman filter (EKF) based on the five-link model. Oriolo et

al.[12] proposed EKF combining the foot-based kinematics

and visual information. Those assume that the supporting

foot contacts stationarily to the ground during the stance.

Ahn et al.[13] proposed a Kalman filter for dynamic motions

including the heel and toe contact phase. However, the foot-

based kinematics in this paper is also disturbed by the ground

contact at the part of the sole. The supporting foot can move

in various way with respect to the ground, and in general

situations, it is difficult to know how they move during a

step in advance. Rotella et al.[14] dealt with the movement of

supporting foot as the noise. However, in dynamic motions,

the magnitude of the noise varies with the motion.

This paper proposes a Kalman filter which takes the move-

ment of the supporting foot into consideration. In contrast

to our previous work[15], this paper focuses on the time

property of the noise of the kinematics computation, but it is

difficulty to model the noise due to the effect by the motion

and the contact condition of the supporting foot. For the

difficulty, the proposed filter employs the anchoring pivot

(AP), which corresponds to the minimum velocity point in

the author’s previous work[15], as the pivot of the foot-

based kinematics. Thus, AP can make modeling the noise

easier, while the estimation accuracy of AP is improved. The

previous version had a shortcoming that it was sensitive to

the error of attitude estimation. This is mitigated by fusing

ZMP on each sole.

II. KALMAN FILTER REFLECTED THE FOOT CONTACT

CONDITION FOR AP-BASED DEAD RECKONING

Our goal is to estimate p0 and v0 which are the position

and velocity of the body frame Σ0 with respect to the

inertial frame Σ, respectively. For this purpose, the filter,

which combines p0 obtained by the foot-based kinematics

computation with that obtained by the double integral of

acceleration (DIA), is designed based on the frequency or

time domain. The design based on the former one needs the

complementarity of signals, but it has the advantage of easier

tuning of parameters if the frequency properties of signals or

noises are empirically known. On the other hand, that on the

latter has the difficulty in tuning of parameters, but it can deal

with the certainty of signals. Namely, the main difference

between them is how to deal with the property of noises.

Now, we consider the properties of signals for dead reck-

oning, DIA is high-reliable in the high frequency domain,

namely, it depends on the frequency domain. On the other

hand, noises included in the kinematics computation depend



Fig. 1. The proposed Kalman filter

on the time domain rather than the frequency one. Thus, our

previous work[15] designed a complementary filter based on

the frequency property of DIA. In contrast, this paper designs

a Kalman filter by focusing on the time-dependency of the

noise property of the kinematics computation. However, the

difficulty of tuning still remains. It is due to that the noise

is affected by the motion and the contact of the supporting

foot which are accompanied with the locomotion.

In order to simplify the noise model, this paper lowers

the effect of the motion of the supporting foot by using AP-

rooted kinematics computation, thus the noise is approxi-

mated as the function only of the contact condition and white

noise. Regarding the kinematics computation from each foot

as the observation model, the model is written as

y =

[

1 O

1 O

]

x+

[

1

1

]

ep +E(fL,fR)wo, (1)

where x =
[

pT
0 vT

0

]T
. 1, O ∈ R

3×3 are the identity matrix

and the zero matrix, respectively. E(fL,fR) ∈ R
6×6 is

the coefficient matrix of the observation noise wo ∈ R
6

to reflect the variation of reliability in accordance with the

ground reaction force acting on the left foot fL and the

right foot fR under the assumption that the magnitude of

the force is related to the foot contact condition. Tuning of

those are detailed in Section IV. y =
[

p̃T
0L p̃T

0R

]T
. p̃0L and

p̃0R mean p0 obtained from the left foot frame ΣL and the

right foot frame ΣR by AP-rooted kinematics computation,

respectively. AP computation is detailed in Section III. The

measurement is computed based on the estimate one step

before, so that the position error of the estimate one step

before ep ∈ R
3 is included in the observation model. In the

kinematics computation, R0 and ω0, which mean the attitude

and angular velocity of Σ0 with respect to Σ, respectively,

are supposed to be given by the attitude estimator[16], in

advance. The joint angles and those derivatives, which are

used to obtain the relative values between the body and each

foot, are measured by encoders accurately.

On the other hand, the acceleration is regarded as the input,

a process model is written as

ẋ =

[

O 1

O O

]

x+

[

O

1

]

(a0 − g) +ws, (2)

where g = [0 0 g]
T

, g = 9.8[m/s2] is the acceleration due

to the gravity. a0 is the acceleration of Σ0 with respect to Σ
and is measured by an accelerometer. ws ∈ R

6 denotes the

process noise which tuning of is also detailed in Section IV.

The proposed Kalman filter is designed for the system

constructed by Eqs. (1) and (2). Its observability and con-

trollability are easily confirmed. Fig. 1 shows the overview

of the proposed method which sequence is composed of the

following steps:

i) AP estimation on each foot based on the velocity and

force constraint.

ii) Updating the position of each foot and the body.

iii) Kalman filter designed for the system represented by

Eqs. (1) and (2).

III. AP COMPUTATION BASED ON THE VELOCITY AND

THE FORCE CONSTRAINT

The following discussion can be applied to both feet, so

that this section only focuses on ΣL. In previous work[15],

the position of AP on ΣL, pLA, was obtained as

pLA = pL +RL
LpLA, (3)

where pL and RL are the position and attitude of ΣL with

respect to Σ, respectively, and computed as

pL = p0 +R0
0pL, (4)

RL = R0
0RL. (5)

0pL and 0RL represent the relative position and attitude

between Σ0 and ΣL, respectively, and are obtained by

encoders and the link parameters. If LpLA can be computed,

then p0 and pL can be updated based on Eqs. (3) and (4).

In order to estimate LpLA, we focused on the differential

kinematics on the foot. The estimate Lp̂LA was computed

as the minimizer of the following evaluation function:

E = E1 +
1

T 2
m

E2, (6)

where Tm is the positive time constant working as the weight.

E1 and E2 mean the evaluation functions expressing the

global velocity of AP and the regularization term, respec-

tively, and are written as

E1 =
1

2
‖vL + ωL ×RL

Lp̂LA‖
2, (7)

E2 =
1

2
‖δ Lp̂LA‖

2. (8)

Lp̂LA is an instantaneous variable, so that Lv̂LA equals the

zero vector 0 ∈ R
3. Thus, δ Lp̂LA is not Lp̂LA but the

variation between Lp̂LA at a certain moment and at the next



moment. vL and ωL are the velocity and angular velocity of

ΣL with respect to Σ, respectively, and calculated as

vL = v0 + ω0 ×R0
0pL +R0

0vL, (9)

ωL = ω0 +R0
0ωL. (10)

0vL and 0ωL denote the relative velocity and angular veloc-

ity between Σ0 and ΣL, respectively, and can be computed as

well as 0pL and 0RL. Eq. (9) uses the tentative estimate of

v0. However, vL obtained by Eq. (9) becomes inaccurate due

to the attitude error, even if v0 is the ground truth. Namely,
Lp̂LA based on Eq. (6) is sensitive to that error.

In order to reduce the influence of the attitude error,

this paper computes Lp̂LA by using the evaluation function

representing the line of force action through ZMP of each

sole addition to the above functions. This idea is based on

the assumption that the largest force acts on the point with

the least motion and the point with that force exists on that

line. The equation of the moment on that line is written as

LτL +
(

LpLF − Lp̂LA

)

× LfL = 0, (11)

where LτL and LfL are the torque and the force which are

represented on ΣL and measured by the force sensor attached

on the left foot, respectively. LpLF is the position of the

force sensor on ΣL. Therefore, Lp̂LA is computed as the

minimizer of the following evaluation function:

E = α1E1 +
1

ζ2
E2 + α3

1

ζ3
E3, (12)

E3 =
1

2
‖LτL +

(

LpL,F − Lp̂LA

)

× LfL‖
2, (13)

where α1 and α3 are the positive weights for E1 and E3,

respectively. The weight for E2 is necessary to regularize,

so that it is set to 1.0. ζ2 and ζ3 are the positive constant to

convert the dimension into the square of the velocity. After

the computation of Lp̂LA, the estimates p̃L and p̃0L are

obtained by kinematics.

Likewise, Rp̂RA, p̃R and p̃0R can be computed.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

A. Proposed Kalman filter

A discretization is required to implement the proposed

method on the computer. Hereafter, ∆T denotes the sampling

interval and ∗k means the value of the variable ∗ at k∆T .

First, Eqs. (1) and (2) are represented in discretized way

by the forward difference approximation, as

xk+1 = Axk +B (ak − g) + ∆Tws,k, (14)

yk = Cxk +Dep,k +E(fL,k,fR,k)wo,k, (15)

where

A =

[

1 ∆T1
O 1

]

, B =

[

O

∆T1

]

, C =

[

1 O

1 O

]

, D =

[

1

1

]

.

Suppose that E(fL,k,fR,k) is a diagonal matrix, its

components correspond to the reliability of each foot-based

kinematics. For this reason, its value should be large when

the foot is unlikely to contact on the ground, namely, when

Fig. 2. The robot model. (a)The exterior. (b)The structure. (c)The shape
of the foot

the force is small. On the other hand, the larger value the

force sensor outputs, the smaller value the component is.

Therefore, this paper designs E(fL,k,fR,k) as

E(fL,k,fR,k) =

[

1

ηf̂Lz,k+1
1 O

O 1

ηf̂Rz,k+1
1

]

, (16)

where η is the positive constant. f̂∗z,k is the non-dimensional

value arranged the upper bound and the lower bound of the

vertical component of f∗,k by using the robot mass M , as

f̂∗z,k =







0 (f∗z,k < 0)
f∗z,k
Mg

(0 ≤ f∗z,k < Mg)

1 (Mg ≤ f∗z,k)

(∗ = L orR), (17)

Let x̂k and x̄k be the estimated and the predictive value

of xk, respectively, Kalman filter for the system represented

by Eqs. (14) and (15) is composed of the following steps:

Kk = P̄x,kC
T
(

CP̄x,kC
T + So,k

)−1
, (18)

So,k = DP̂p,k−1D
T +EkPoE

T
k , (19)

x̂k = x̄k +Kk (yk −Cx̄k) , (20)

P̂x,k = P̄x,k −KkCP̄x,k, (21)

x̄k+1 = Ax̂k +B (ak − g) , (22)

P̄x,k+1 = AP̂x,kA
T + Ps. (23)

where Ps, Po ∈ R
6×6 are the covariance matrices of ws∆T

and wo, respectively. Hereafter, Ps and Po are assumed as

the diagonal matrix which components are represented by

σs,ii and σo,ii, respectively. P̂x,k and P̄x,k are the error

covariance matrices of x̂k and x̄k, respectively. P̂p,k ∈ R
3×3

mean the covariance matrix of ep which corresponds the

matrix of the upper left of P̂x,k.

Finally, the tuning of σs,ii, σo,ii and ǫ is described. Since

σs,ii (i = 4, 5, 6) is mainly due to the acceleration noise, it is

designed based on Allan variance[17] of the accelerometer.

For easy tuning, this paper uses the average of them σsv.

On the other hand, σs,ii (i = 1, 2, 3) is due to the discrete

noise rather than the above noise, so that it is represented by

a parameter σsp. σo,ii and ǫ represents the reliability of the

kinematics computation when the foot is on the ground and

in the air, thus the variances in those situations, which are

denoted by σomin and σomax, respectively, are determined at

first. They represents a reliability of kinematics computation

relative to that of DIA, so that they are determined as

σomin = 0.1σsp, σomax = 1000σsp. (24)



Then, σo,ii and ǫ are computed as

σo,ii = σomax, η =

√

σomax

σomin

− 1. (25)

B. AP estimation

For the implementation, it is also required to represent Eq.

(12) in discretized way and to show its computability. E1 ,

E2 and E3 shown in Section III are discretized as

E1 =
1

2
‖v̄L,k + ωL,k ×RL,k

Lp̂LA,k‖
2, (26)

E2 =
1

2
‖ Lp̂LA,k − Lp̂LA,k−1‖

2, (27)

E3 =
1

2
‖LτL,k +

(

LpLF − Lp̂LA,k

)

× LfL,k‖
2. (28)

where v̄L is obtained by putting the predicted value v̄0 into

Eq. (9). This paper set ζ2 and ζ3 as ζ2 = ∆T 2 and ζ3 =
(Mg∆T )2, respectively. The following equation is obtained

by the stationary condition
(

∂E
∂ Lp̂LA,k

)T

= 0:

GL,k
Lp̂LA,k = uL,k, (29)

where

GL,k =
1

ζ2
1− α1

[

Lωk×
]2

−
α3

ζ3

[

LfL,k×
]2

,

uL,k =
1

ζ2
Lp̂LA,k−1 + α1

[

Lωk×
]

RT
L,kv̄L,k

+
α3

ζ3

[

LfL,k×
] (

LτL,k −
[

LfL,k×
]

LpLF

)

and Lω̂k = RT
L,kωL,k. Since GL,k is the positive matrix,

it is easily confirmed that Lp̂LA,k can be computed by Eq.

(29). By using Lp̂LA,k, p̃L,k and p̃0L,k are computed as

p̃L,k = p̂0,k−1 +R0,k−1
0pL,k−1

−RL,k
Lp̂LA,k +RL,k−1

Lp̂LA,k, (30)

p̃0L,k = p̃L,k −R0,k
0pL,k. (31)

Likewise, Rp̂RA,k, p̃R,k and p̃0R,k can be computed.

V. EVALUATION BY SIMULATION

A. Set up

Simulations were executed on the dynamics simulator

OpenHRP3[18] with a robot shown in Fig. 2. An accelerome-

ter and force sensors are attached on the body and each ankle

of the robot, respectively. In simulations, we set to M =
10.0[kg] and ∆T = 2[ms]. The reference of joint angles

and those differential, which are given to PD controller, were

computed based on Yamamoto et al.[19] in advance. Both the

static and kinetic coefficient were set to 1.0.

In this paper, the following methods are compared:

• The foot-based kinematics without AP (FK)

• DIA with a high-pass filter (DIA+HPF)

• The complementary filter proposed in [15] (Previous)

• The proposed method (Proposed)

Table I shows parameters of Proposed which were tuned

by about 100 trials and errors for one datum. σo,ii and ǫ
are determined based on Eqs. (24) and (25). Parameters of

TABLE I

PARAMETERS OF THE PROPOSED METHOD

Parameter σsp σsv α1 α3

Value 0.001 0.0085 1.0 0.01

TABLE II

THE ERROR OF ESTIMATION FOR WALKING

Method x y z 3D

FK 40.09 35.98 43.29 69.10
Position DIA+HPF 123.3 105.7 52.69 170.7

[mm] Previous 38.25 30.26 47.34 67.97
Proposed 35.59 32.70 13.09 50.07

FK 1029.4 1009.8 167.2 1451.6
Velocity DIA+HPF 142.1 136.9 72.75 210.3
[mm/s] Previous 150.8 152.4 74.68 227.1

Proposed 85.75 84.59 34.79 125.4

TABLE III

THE ERROR OF ESTIMATION FOR JUMPING

Method x y z 3D

FK 36.59 47.27 331.1 336.4
Position DIA+HPF 342.5 366.3 199.1 539.5

[mm] Previous 115.1 121.6 88.81 189.5
Proposed 102.1 108.5 43.00 155.0

FK 859.7 1122.1 1670.6 2188.4
Velocity DIA+HPF 240.0 262.4 181.1 399.0
[mm/s] Previous 198.9 200.3 153.6 321.3

Proposed 147.9 150.6 134.4 250.2

Previous were the same as that in [15] except for Tm. In

order to evaluate the effect of E3, the weight for E2 in Eqs.

(6) and (12) were arranged, namely, Tm = ∆T . A high-pass

filter used in DIA+HPF was also the same as that in [15].

Let N (µ,Σ) be the normal distribution represented by the

mean µ and the covariance matrix Σ, the following errors

are considered in order to imitate sensor noises:

ea ∼ N (µa, 0.1
2
13), µa ∼ N (0, 0.04213), (32)

ef ∼ N (0, 1.0213), eτ ∼ N (0, 0.01213), (33)

eR =
3.0

(1 + (1/10π)s)
2
wR, wR ∼ N (0, 0.1213), (34)

where ea, ef , eτ and eR mean the error of acceleration,

force, torque and attitude, respectively. wR was filtered by

2nd-order low-pass filter to imitate both the attitude error

and the angular velocity error. ea, ef and eτ were simply

added to true values and eR was added to Euler angles

corresponding to R0. The mean µa was initialized at the

beginning of each simulation. The simulation was run 1000

times in all for one motion.

B. Walking on the plane

As shown in Fig. 3, the robot walks forward with the

heel and toe contact. First, it is evaluated that AP-rooted

kinematics computation reduces the effect on the noise by

the motion of the foot. The relationship between the absolute

value of position errors of the kinematics computation from

the left foot and f̂Lz,k without attitude error is plotted in

Fig. 4. The result shows that the motion affects noises from

the kinematics computation without AP. On the other hand,

AP-rooted kinematics computation can reduce the effect.

The root-mean-square error (RMSE) of the position and

velocity estimation is shown in Table II. Figs. 5 and 6 show



Fig. 3. The snapshots of walking on the plane

(a) x-direction (b) y-direction (c) z-direction

Fig. 4. The relationship between the absolute value of position errors of the kinematics computation from the left foot(vertical : [m]) and f̂Lz(horizontal).

(a) x-direction (b) y-direction (c) z-direction

Fig. 5. A result of position estimation for walking on the plane. (The vertical axis is position[mm] and the horizontal one is time[s]. )

(a) x-direction (b) y-direction (c) z-direction

Fig. 6. A result of position estimation for walking on the plane. (The vertical axis is velocity[mm/s] and the horizontal one is time[s]. )

an example of the result. From the result, FK can roughly

follow the ground truth in x and y direction. However, its

accuracy in z direction is lowered due to the change in

height caused by the rolling of the supporting foot. Although

DIA+HPF can estimate the velocity more accurate than the

above method, its accuracy of position estimation suffers

from the error accumulation. Previous is accurate moderately,

but it is strongly affected by the foot-based kinematics

because Tm is designed as the small value. Proposed can

be more accurate in both estimations than other methods.

Especially, compared with Previous, 3D-RMSE can reduced

about 25[%] in the position estimations and 30[%] in the

velocity estimation. This is mainly due to the existence of E3,

so that the efficacy of the novel AP computation is verified.

C. Jumping

As shown in Fig. 7, the robot squats down first and jumps

forward diagonally afterwards. Table III shows RMSE of the

position and velocity estimation. An example of the result is

plotted in Figs. 8 and 9.

As expected, FK cannot follow the true motion of z
direction during the jumping. DIA+HPF follows that motion

comparatively, but its accuracy is degraded by the error

accumulation as well as the case of walking. Compared

with them, both Previous and Proposed are improved by

taking the reliability varied with the foot contact condition

into consideration. Additionally, RMSE of Proposed is about

25 [%] less in both estimations than Previous due to the

improvement of AP computation.

VI. CONCLUSION

For the dead reckoning of biped robots, this paper pro-

poses a novel Kalman filter which combines the foot-based

kinematics and the acceleration basically. The accuracy of

the foot-based kinematics is improved by using AP as the

pivot of the kinematics. The sensitivity to the attitude error,

which the previous computation of AP has, is lowered by

considering the force constraint. Additionally, the observa-



Fig. 7. The snapshots of jumping

(a) x-direction (b) y-direction (c) z-direction

Fig. 8. A result of position estimation for jumping. (The vertical axis is position[mm] and the horizontal one is time[s]. )

(a) x-direction (b) y-direction (c) z-direction

Fig. 9. A result of velocity estimation for jumping. (The vertical axis is velocity[mm/s] and the horizontal one is time[s]. )

tion error is adaptively varied with the ground reaction force

in order to reflect the variation of the relative reliability. The

simulation result shows that the proposed method can reduce

RMSE compared with the our previous method.
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