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Abstract— A high-fidelity attitude estimation technique for
wide and irregular movements is proposed, in which het-
erogeneous inertial sensors are combined in complementary
way. Although the working frequency ranges of each sensor
are not necessarily complementary, inverse sensor models are
utilized in order to restore the original movements. In the
case of 3D rotation, the sensor dynamics displays a highly
nonlinear property. Even if it is approximated by a linear
system, the inverse model of a sensor tends to be non-proper
and unstable. An idea is to decouple it into the dynamics
compensation part approximated by a linear transfer function
and the strictly nonlinear coordinate transformation part.
Bandpass filters inserted before the coordinate transformation
guarantee that the total transfer function becomes proper and
stable. Particularly, the differential operator of a high-pass
filter cancels the integral operator included in the dynamics
compensation of the rate gyroscope, which causes instability.
The proposed method is more beneficial than Kalman filter
in terms of the implementation since it facilitates a systematic
design of the filter.

I. I NTRODUCTION

Attitude estimation is a crucial issue for the control of
mobile machines such as aero crafts, unmanned vehicles and
legged robots, especially when they move irregularly over
wide spatial area. For this purpose, so-called inertial sensors
including accelerometers, inclinometers and rate gyroscopes
are used. However, each individual sensor has its own draw-
back. An inclinometer and an accelerometer, which find the
direction of gravity in stationary state, are easily disturbed
by dynamic translational movements. Since a rate gyroscope
only measures the deviation of angular movement, integra-
tion of the output signal is required in order to estimate
the absolute attitude, so that it often diverges due to the
accumulation of drifts. For high-fidelity attitude estimation,
it is necessary to combine those heterogeneous sensor outputs
to complement inperfections of each other.

Kalman filter[1][2][3][4] is one of the frequently-used
tool to pickup relevant information from mixed signals. A
particular problem is that it is hard to tune the design
parameters for reliable estimation, since how to characterize
sensor signals in time domain is not trivial. On the other
hand, complementary filter[5][6][7][8][9][10][11] is rather
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a promising technique, where it is designed in frequency
domain. The frequency response analysis of each sensor
tells its working frequency range. The problem is that
those working ranges of each sensor are not necessarily
complementary, so that the accuracy of estimation is possibly
degraded against movements in particular frequency range.
An idea to resolve these problem is to compensate the sensor
dynamics and enlarge working ranges of each sensor as
shown in Fig.1(a). Based on this, Baerveldt and Klang [12]
and Hadri and Benallegue [13] succeeded to improve the
accuracy of estimation. The former dealt only with rotation
about one axis, and the latter considered no interference.
In the case of 3D rotation, the sensor dynamics displays a
highly nonlinear property. Even if it is approximated by a
linear system, the inverse models of sensors tend to be non-
proper and unstable.

We propose a novel technique to overcome the above
problem, where the inverse model of sensors are decoupled
into the dynamics compensation part and the coordinate
transformation part as shown in Fig.1(b). The former part is
approximated by a linear transfer function, while the latter
part is computed in strict nonlinear form. Then, bandpass
filters are designed and insertedbeforethe coordinate trans-
formation in order to guarantee that the total transfer func-
tion becomes proper and stable. Particularly, the differential
operator of a high-pass filter cancels the integral operator in-
cluded in the dynamics compensation of the rate gyroscope,
which causes instability. Experimental results show that the
proposed method substantially improves the fidelity of the
estimation even in fast and irregular movements up to 5[Hz].

II. COMPLEMENTARY FILTER WITH DECOUPLED LINEAR

AND NONLINEAR PROPERTIES

The complementary filter [5], as its name explains, com-
bines signals from heterogeneous sensors in a complemen-
tary manner in order to improve the accuracy of estimation. It
is designed in the frequency domain where each sensor signal
in the reliable frequency range is filtered and synthesized.
The following equation represents the basic idea of linear
complementary filter:

Y (s) =
∑n

i=1
F i(s)Xi(s), (1)

whereY (s) is the estimated value,Xi(s) is the ith sensor
output andF i(s) is the bandpass filter for theith sensor.
For the attitude estimation, for example,F i(s) is defined
as a low-pass filter for an inclinometer, while it is defined
as a high-pass filter for a rate gyroscope. As long as the



Inclino-

meter

Gyro-

scope

Magneto-

meter

+
+

+

ηη est

nominal inverse model 

of magnetometer

nominal inverse model 

of inclinometer

nominal inverse model 

of gyroscope

HPF

LPF

LPF

(a) the original idea with a compensation of sensor dynamics
Nominal  inverse  model (split)

Inclino-

meter

Gyro-

scope

Magneto-

meter

+
+

+

η
est

G  (s)
~ -1

1

Dynamics

compensation

G  (s)
~ -1

2

G  (s)
~ -1

3

H1

H2

H3

HPF

Coordinate

transformation

η
LPF

LPF

(b) a revised idea with a sensor dynamics which is splitted into
a linear transfer function and the coordinate transformation

Inclino-

meter

Gyro-

scope

Magneto-

meter

+
+

+

η
est

G  (s)
~ -1

1

G  (s)
~ -1

2

G  (s)
~ -1

3

H1

H2

H3

Proper and stable 

LPF

LPF

HPF

η

(c) the proposed idea to guarantee the properness and stability
where a bandpass filter is inserted between the linear transfer
function and the coordinate transformation

Fig. 1. Complementary filter for attitude estimation

following condition is satisfied, the filter designed based on
Eq.(1) consistently estimates the original signal.∑n

i=1
F i(s) = 1, (2)

where1 is unit matrix.
The problem lies in a fact that the reliable frequency

domains of each sensor are not necessarily complementary.
Due to that, the accuracy of estimation is degraded in
the frequency range without any reliable sensor signals. In
the case of a combination of an inclinometer and a rate
gyroscope, the former is easily affected by translational
movements and its working range is low. An idea against this
concern is to insert inverse models of each sensor before the
bandpass filters in order to compensate the sensor dynamics
which causes substantial delays of the outputs as Fig.1(a)
depicts. In the case of 3D rotation, however, the sensor
dynamics displays a highly nonlinear property. Even if it is
approximated by a linear system, the inverse models of the

sensors often become non-proper or unstable. Particularly,
the inverse model of the rate gyroscope includes a rather
complex spherical integration operator which accumulates
the drift of the output and that operator makes the system
unstable in linear approximation.

In order to overcome the above problem, we propose
a novel technique. First, the inverse model of a sensor is
decoupled into the sensor dynamics compensation part and
the coordinate transformation part as in Fig.1(b). The former
part is approximated by a linear transfer function, while the
latter part is based on the strict nonlinear computation. This
computation is represented by the following equation:

ηest =
∑n

i=1
F i(s)Hi

(
G̃

−1

i (s)Xi(s)
)

, (3)

whereηest is the estimation of the original attitudeη, Hi(·)
is the coordinate transformation from theith sensor frame
to the inertial frame, andG̃i(s) is a nominal linearized
dynamics model of theith sensor.

Then, the bandpass filters are inserted between those split
parts. Since the bandpass filters are also designed as linear
transfer function, they are merged with the dynamics com-
pensation part as depicted in Fig.1(c). The merged system
can be made proper and stable by carefully designing each
filter. This means that Eq.(3) is modified as follows:

ηest =
∑n

i=1
Hi

(
F i(s)G̃

−1

i (s)Xi(s)
)

, (4)

where the systemF i(s)G̃
−1

i (s) for any sensor is proper and
stable. The reason why such swapping of the order of process
is acceptable depends on the types of sensors. The detail is
described in the following section.

III. I MPLEMENTATION OF THE COMPLEMENTARY FILTER

A. Representation of 3D attitude

In this paper, attitude is defined by angles shown in Fig.2
and is parameterized byη = [θ1 θ2 ϕ]T where θ1 and θ2

represent the inclination andϕ represents the azimuth. By
that representation, the attitude matrix of the sensor frame
with respect to the inertial frame is obtained as follows,

R = RϕRθ, (5)

whereRθ is

Rθ =

[
κ/ cos θ1 κ sin θ1 tan θ2 κ tan θ2 cos θ1

0 cos θ1 − sin θ1
−κ tan θ2 κ tan θ1 κ

]
, (6)

κ ≡ 1√
1 + tan2 θ1 + tan2 θ2

, (7)

andRϕ is

Rϕ =

[
cos ϕ − sinϕ 0
sinϕ cos ϕ 0

0 0 1

]
. (8)

Therefore, by Eqs.(5), (6) and (8),R is

R =

[
κCϕ/C1 −C1Sϕ + κCϕS1T2 SϕS1 + κCϕC1T2

κSϕ/C1 CϕC1 + κSϕS1T2 −CϕS1 + κC1SϕT2
−κT2 κT1 κ

]
,

(9)



where the subscripts1, 2andϕ meanθ1, θ2 andϕ respectively
and Ci, Si and Ti (i = 1, 2, ϕ) mean cosine, sine and
tangent respectively.

B. The coordinate transformation

For the gyroscope, the integrated value of the angular
velocity vectorω is transformed toη by nonlinear function
originally. However, the integration has no physical meaning,
so that following sequence is considered. First, the angular
velocity vectorω is transformed to the rates of attitudeη̇.
After that, η̇ is integrated and filtered by high-pass filter.
Therefore, we define the transformation fromω to η̇ as
the coordinate transformation. By the swap of the order of
the coordinate transformation and filtering process in later
subsection, the differential operator included in high-pass
filter cancels the integral operator. As a result, it is equal to
the sequence which is transformation after the sensor output
is integrated and filtered.

The rate gyroscope outputs the angular velocitybω of the
sensor frame where its direction is with respect to the sensor
frame itself. Namely,

ω = R bω ⇔ bω = RTω. (10)

By using Rodrigue’s formula, the variation of attitude matrix
in micro time is obtained as follows:

dR = 1 − ω×

∥ω∥
sin(∥ω∥dt) +

(ω×)2

∥ω∥2
(1 − cos(∥ω∥dt)) ,

(11)
whereω× is the matrix which represents the cross product
with ω. In practice, the latest estimation ofR in the previous
step is available instead of the current attitude. From Eq.(9),
the variationdη in dt is

dη =

[
atan2(dr32, dr33)
−atan2(dr31,dr33)
atan2(dr21, dr22)

]
, (12)

wheredrij represents theith row andjth column element
of dR. When implementing this in a discretized form,
dt is approximated by sampling time∆T , we define the
coordinate transformationH1( bω) which do bω to η̇ as
follows:

H1( bω) ≡ dη

dt
≃ ∆η

∆t
. (13)

Also, the output of the inclinometerξ1 andξ2 correspond
to the inclinationθ1 and θ2 respectively. That of the mag-
netometerm ∈ R3 is affected by not only the azimuth but
the inclination. The azimuthϕ is that the vectorRT

θ m =
[xm ym zm]T which is compensated byRθ makes with the
initial vector m0 = [xm0 ym0 zm0]T. Therefore, we define
the coordinate transformation of inclinometerH2(ξ1, ξ2) and
that of magnetometerH3(m) as follows:

H2(ξ1, ξ2) ≡ [ξ1 ξ2 0]T , (14)

H3(m) ≡
[ 0

0
atan2(xmym0 − ymxm0, xmxm0 + ymym0)

]
,

(15)
where the angle, which we don’t get, is regarded as zero.
These values obtained by both transformations are treated as
the estimation in low frequency range.

Fig. 2. The inclination and azimuth

C. Linear approximation of sensor dynamics

Although the actual sensor dynamics is non-linear due to
the interference of movements along various directions, we
assume that it is approximated by a linear transfer function
and the interference between movements about independent
axes are linearly separable. A support for this assumption is
that the commercial sensors are designed so as to reduce
the effect of movements other than that in the direction
of interest. Based on the above, the nominal dynamics of
the rate gyroscopẽG1(s), the inclinometerG̃2(s) and the
magnetometer̃G3(s) are represented as follows:

G̃1(s) = s


K11

D1(s)
K12

D1(s)
K13

D1(s)
K21

D2(s)
K22

D2(s)
K23

D2(s)
K31

D3(s)
K32

D3(s)
K33

D3(s)

 , (16)

G̃2(s) =
1

D(s)

[
1 k1

k2 1

]
, (17)

G̃3(s) =

[
M11 M12 M13

M21 M22 M23

M31 M32 M33

]
. (18)

We empirically verified that the denominators ofG̃1(s)
are all by linear functions,D(s) is well-approximated by a
quadratic function and̃G3(s) are all constant. They can be
identified by examining the frequency responses between one
of the components of the input and one of the components
of the output of each sensor and applying the least square
method. An example process will be shown in the next sec-
tion. Based on them, the inverse model of sensor dynamics
are obtained as̃G

−1

1 (s), G̃
−1

2 (s) andG̃
−1

3 (s).
Note that G̃

−1

1 (s) includes the integration operator 1/s.
We know that it is mathematically incorrect to apply the
integration to the angular velocity. However, it is totally
cancelled by the high-pass filter, so that it doesn’t harm the
approximation.

D. the swap of the order of the coordinate transformation
and filtering process

It should be explained why the swap of the order of the
coordinate transformation and filtering process is accepted.
Concerning with the inclinometer, from the coordinate trans-
formation defined by Eq.(14), the swap is trivial. Also,
G̃

−1

3 (s) is constant matrix, so that the swap isn’t necessary.
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(a) Example of frequency response around primary
axis (G̃1,11).
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(b) Example of frequaency response around interfer-
ing axis (G̃1,23).

Fig. 3. Bode diagram of rate gyroscope

The reason is not very clear in the case of the gyroscope.
Given that∥ω∥∆T ≪ 1, Eq.(11) is approximated as follows:

dR ≃ I − ω×

∥ω∥
∥ω∥∆T = I − ω×∆T. (19)

Then, Eq.(12) is rewritten by Taylor expansion,

H1(bω) ≃ R bω + (1/∆T )O
(
(R bω∆T )3

)
, (20)

whereO(v3) represents 3D vector[O(v3
x) O(v3

y) O(v3
z)]T

for the vectorv = [vx vy vz]T. Hence,

H1(F bω) ≃ RF bω + (1/∆T )O
(
(RF bω∆T )3

)
, (21)

FH1(bω) ≃ FR bω + F (1/∆T )O
(
(R bω∆T )3

)
. (22)

If F 1(s) = F1(s)1, then we getFR ≃ RF . Now, we know
they coincide with each other up to the second order term,
so that one may say the former well approximates the latter
and it causes no serious problem.

IV. EXPERIMENTS

A. Sensors and identification of dynamics

This section presents an example of the implementation of
the proposed method. We adopted X3M (US Digital) as the
inclinometer, CRS07-11S (Silicon Sensing Systems Japan)
as the rate gyroscope and AMI304(Aichi Micro Intelligent)
as the magnetometer. X3M internally measures the accel-
eration due to the gravity and AMI304 measures terrestrial
magnetism. These outputs digital signal so that it less suffers
from analog noises. CRS07-11S is a small vibrating structure
gyro with less drifts. They are not very expensive (several
hundreds of US dollars) and easily available. In spite of small
signal noises and drifts on them, they are individually still
imperfect as well as other inertial sensors.
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(a) Example of frequency response around primary
axis (G̃2,11).
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(b) Example of frequaency response around interfer-
ing axis (G̃2,12).

Fig. 4. Bode diagram of inclinometer

First, the transfer functions of each sensor are identified.
The experimental table rotates about three orthogonal axes
independently. Each axis is controlled by a servo system with
a high-gain PID compensator.

By applying a sinusoidal reference to the servo controller,
a response of the table and the sensor is measured in cases of
the gyroscope and the inclinometer. We collected 3 responses
for each frequency from 0.02[Hz] to 5[Hz]. Then, gain and
phase lag from the table to the sensor for each frequency are
identified through the least square method and plotted on a
bode diagram. Figs.3 and 4 are examples of the resulted Bode
diagrams. The transfer function is also identified through the
least square method as

G̃1(s) = s


1.035686

1+0.004112s
−0.025885

1+0.004112s
0.005136

1+0.004112s
0.034362

1+0.004177s
1.070075

1+0.004177s
−0.009853

1+0.004177s
−0.038275

1+0.004858s
0.029495

1+0.004858s
1.075213

1+0.004858s

 ,

(23)

G̃2(s) =
1

D(s)

[ 1 0.01431
0.01904 1

]
, (24)

where
D(s) = 1 + 0.1788s + 0.0113609s2 (25)

and the order of each function is empirically determined.
Note thatG̃

−1

1 (s) is unstable and̃G
−1

2 (s) is non-proper.
In case of the magnetometer, the terrestrial magnetism,

which is varied sinusoidally by rotating table around vertical
axis at constant angular velocityΩ, is input to the sensor.
Then, gain and phase are identified through the least square
method and normalized as thatx direction’s gain is equal
to 1. Figs.5 shows the resulted Bode diagram. The transfer
function is assumed as the diagonal matrix, so that the
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Fig. 5. Bode diagram of magnetometer

function is

G̃3(s) = diag{1.0, 1.048, 0.980}. (26)

B. Design of complementary bandpass filter

The Bode diagrams also tell the reliable frequency range
of each sensor. In our case, the dynamics of X3M is well
approximated by the identified function up to about 1[Hz],
while that of CRS07-11S rather shows a good property in a
wide range. In order to makeF 2(s)G̃

−1

2 (s) proper,F 2(s)
must be the second or more order lag system. Then, we
define the complementary filters as

F 1(s) =
(1/3)s(1 + (1/12)s)

(1 + (1/6)s)2
1, (27)

F 2(s) =
1

(1 + (1/6)s)2
diag{1, 1, 0}, (28)

F 3(s) =
1

(1 + (1/6)s)2
diag{0, 0, 1}, (29)

whereF 1 has high-pass characteristics andF 2 andF 3 have
low-pass characteristics, and they satisfy complementary
condition. Moreover, sinceF 1(s) has the differential oper-
ator s, which cancels the integral operator ofG̃

−1

1 (s) and
makesF 1(s)G̃

−1

1 (s) stable. It also resolves mathematically
incorrect integration of the angular velocity.

C. Results

The performance of the designed complementary filter was
examined on the same testing table. The rotating motion to
be estimated was composed of the following functions:

qi(t) =
∑5

j=1
(aij sin(2πfijt) + bij cos(2πfijt)) , (30)

where the coefficientsaij and bij and the frequencyfij up
to 5[Hz] were chosen at random as shown in Table I. The
sampling time was 3[ms] and the total time was 30[s].

Fig.6 shows the results of estimations by the proposed
method and the conventional methods from 0[s] to 10[s].
For comparison, Yun et al.’s method[3] was also examined
as a representative of nonlinear Kalman filters. The errors
between the estimated and true values including that of
Kalman filter without tuning are plotted in Fig.7. Root-

TABLE I

THE INPUT PARAMETER

j a1j b1j f1j a2j b2j f2j a3j b3j f3j

1 7.99 1.40 0.48 7.62 4.37 0.53 6.96 2.12 0.82
2 7.29 6.50 1.07 0.99 0.28 1.64 4.54 6.20 1.92
3 5.79 4.74 2.19 6.91 5.36 2.21 8.47 7.41 2.26
4 2.90 7.20 3.31 1.69 11.1 3.68 9.23 11.2 3.02
5 6.50 2.28 4.03 10.2 0.28 4.00 3.03 7.41 4.03

TABLE II

THE ESTIMATE ERROR

Angle RMSE SD Mean
θ1,est 2.18 2.18 0.04

Proposed filter θ2,est 2.01 1.89 -0.70
ϕest 2.65 2.64 -0.24

Filter θ1,est 11.1 11.1 0.40
without θ2,est 8.91 8.90 -0.36

inverse model ϕest 5.40 5.33 -0.84
θ1,est 5.17 5.16 -0.29

Yun et al.’s KF θ2,est 3.89 3.85 0.62
(without tuning) ϕest 2.52 2.15 1.32

θ1,est 2.00 1.99 -0.22
Yun et al.’s KF θ2,est 2.40 2.16 -1.06
(with tuning) ϕest 2.44 2.05 -1.33

RMSE · · · root-mean-square error
SD · · · Standard Deviation

mean-square error and standard deviation of those results are
shown in Table II. One can notice that RMSE of inclination
significantly decreases by about 80% and that of azimuth also
does by about 50% compared with the filter without inverse
model. The result shows that the estimation is affected by
sensor dynamics. Therefore, the proposed method has a
better performance over the method without sensor dynamics
compensation. On the other hand, RMSE of inclination
significantly decreases by 60% compared with Kalman filter
without tuning and there aren’t much difference in RMSE
of proposed filter and Kalman filter with tuning. These
results shows that Kakman filter estimates as accurate as the
proposed filter by tuning. However, tuning of Kalman filter
by trial and error takes more time than the proposed filter
to estimate accurately. In fact, we repeated it about 80 times
to get this result. Therefore, in terms of the implementation,
the proposed method has more advantage.

V. CONCLUSIONS

In this research, we proposed a novel technique to improve
the accuracy of the attitude estimation by heterogeneous
inertial sensors. By using inverse model of each sensor,
we designed the complementary filter which enlarge each
reliable frequency range. The inverse model is decoupled
into the linear dynamics compensation part and the nonlinear
coordinate transformation part. Then, bandpass filters are
inserted before the coordinate transformation in order to
guarantee that the total transfer function becomes proper and
stable. The experimental results shows that the proposed filter
is more accurate than the filter without inverse model and
Kalman filter without tuning. The proposed method is more
beneficial than Kalman filter in terms of the implementation
since it facilitates a systematic design of the filter.
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Fig. 6. The estimation result of proposed filter and Kalman filter
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