Sixth International Conference on Optical, Optoelectronic and Photonic Materials and Applications, July 30 2014, Leeds, UK

X-ray Induced Luminescence Spectroscopy of Samarium Doped Barium Sulfate Prepared by Sintering Method

T Kumeda*1, K Maeda1, Y Shirano1, K Fujiwara1, K Sakai2, T Ikari1

 Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki City 889-2192, Japan
 Cooperative Research Center, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki City 889-2192, Japan

Abstract

- X-ray induced luminescence (XL) properties of phosphor materials made of samarium doped barium sulfate have been investigated.
- The XL observed Sm^{2+} and Sm^{3+} ions.
- The XL intensity increased with Sm concentration up to 1 at.%. The intensity was almost constant larger than 1 at.% Sm.
- Sm doped $BaSO_4$ is found a host for XL phosphor materials.

1-1. Introduction

- X-ray imaging techniques are used in such as medical fields and non-destructive testing.
 ➡ Various materials such as BaSO₄ and SrSO₄ have been developed for X-ray detection materials^[1]
- Indirect imaging method for obtaining X-ray images using fluorescent materials is required high sensitivity phosphor and, large area and high resolution
- An observation of X-ray induced luminescence has a merit of real-time measurement.
- Sm³⁺, Sm²⁺ : red light emitting rare earth
 →The wavelength is a good match to Si detectors.

<u>1-2. Purpose</u> Previous our study

X-ray phosphor of Sm -doped BaS^{[2], [3]}

- \rightarrow Sm³⁺ ions were presented in the material.
 - Sm²⁺ ions were not presented in the material.

This study

The optical and X-ray luminescence properties of Sm -doped BaSO₄.

4

 $BaSO_4$: the PL emission from Sm^{2+} ions has been reported^[4]

[2] Maeda K, Tsudome R, and Ido M 2011 Phys. Status Solidi C 8 pp 2692-2695

[3] Maeda K, Kawaida N, and Tsudome R 2012 Phys. Status Solidi C 9 pp 2271-2274

[4] Stefani R, Maia A D, Teotonio E E S, Monteiro M A F, Felinto M C F C and Brito H F 2006 J. Solid Status Chem. 179 pp 1086-1092

2-1. Sample preparation

• Sample

The mixture of BaSO4, Sm₂O₃

• Dopant

Sm0.01-6 at.%

Reaction condition

Hold 3h at 900~1250°C

2-2. Measurements

- X-ray diffraction (XRD)
- X-ray luminescence (XL)
 Excited at Cu Kα

 (1.54 Å, 45kV, 40mA)
 Optic
- **Photoluminescence (PL)** Excited at 405nm (24mW) diode operating laser

Optical fiber Monochromater Lead glass diode

Fig. 1. XL measurement schematic system.

X-ray protective shields

X-ray generator

PL was measured before X-ray irradiation

3-1.XRD

Sm doped BaSO₄ compound

Single phase of $BaSO_4$ (ICDD card number $\rightarrow 01-080-0512$) Sm : 0.01~6 at.%

Fig. 2. X-ray diffraction patterns of $BaSO_4$ ceramics samples doped (upper curve) 2 at.% of Sm and (lower curve) ICCD data base of card number 01-080-0512.

3-2. XL, PL Spectrum

<u>PL</u>

• 557, 593, 639, 698 nm bands \rightarrow Sm³⁺ ions emitted

<u>XL</u>

- Sm³⁺ ions emitted
- 680, 694, 721 nm bands \rightarrow Sm²⁺ ions emitted

Some Sm³⁺ ions are reduced into Sm²⁺ ions by X-ray irradiation^[4]

Fig. 3. PL spectra excited at 405 nm light is shown in (a), and XL spectra is shown in (b).

3-3. XL, PL Intensity

<u>PL</u> (Fig. 4(a)) Decreasing with

Decreasing with Sm Concentration quenching

quenching

No concentration

 $\underline{\mathbf{XL}}$ (Fig. 4(b) : Sm³⁺, (c) : Sm²⁺)

Sm concentration dependence

- Smaller than 1 at.%. \rightarrow Increasing with Sm
- Larger than 1 at.%. \rightarrow Constant

Intensity ratio of Sm^{3+} and $Sm^{2+} \rightarrow Constant$ (The figure is not shown)

<u>X-ray irradiate time dependence</u> (Inserted figure) XL intensity \rightarrow constant

 $\begin{array}{c} \text{Sm concentration (at.\%)} \\ \text{Fig. 4. PL and XL intensity of } BaSO_4:Sm \\ \text{ceramics as function of Sm concentration.} \end{array} 9$

3-4. Emission Mechanism

4. Conclusion

- We have investigated the optical properties and X-ray luminescence of BaSO₄ ceramics doped Sm.
- The XL spectral bands were identified to the transitions in Sm³⁺ and Sm²⁺ ions.
- The XL intensity is independent of Sm concentration. (larger than 1 at.%)
- Sm doped $BaSO_4$ is found a host for XL phosphor materials.