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Abstract
Purpose Neoadjuvant pharmacotherapy is essential for patients with breast cancer who wish to preserve the breast by
shrinking the malignant tumor, allowing breast-conserving surgery. It may eliminate cancer cells completely, which is known
as pathologic complete response (pCR). Patients with pCR have a lower risk of recurrence. The purpose of this study was to
develop a method for predicting patients who achieve pCR by neoadjuvant pharmacotherapy using radiomic features in MR
images.
Methods Fat-suppressed T2-weighted MR images of 64 cases were identified from the ISPY1 dataset. There were 26 cases
of pCR and 38 cases of non-pCR. The image slice with the largest tumor diameter was selected from MR images, and the
tumor region was manually segmented. A total of 371 radiomic features were calculated from the tumor region. We selected
nine radiomic features using Lasso in this study. A support vector machine (SVM) with nine radiomic features was used for
predicting patients with pCR.
Results The result of the ROC analysis showed that the area under the curve of SVM was 0.92 for distinguishing between
pCR and non-pCR. Although the input data contain data that were misclassified by SVM, the survival curve classified into
the pCR group was at a higher position than the non-pCR group. However, the log-rank test was p � 0.2.
Conclusions We developed a method to predict patients with pCR by neoadjuvant pharmacotherapy using noninvasive MR
images. The survival curve of patients classified as having pCR by the proposed method was higher than those classified as
non-pCR. Since the proposed method predicts patients who achieve pCR by neoadjuvant pharmacotherapy, it enhances the
value of preoperative image information.
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Introduction

Mammography is a recognized screening method that has
been effective in reducing breast cancer mortality. In Europe
and America, the mortality rate is decreasing despite the
increasing incidence of breast cancer because of high mam-
mography screening rate. Since accurate detection of lesions
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is important in breast cancer screening, computer-aided diag-
nosis (CAD) [1–3] was developed to assist radiologists in the
detection of breast cancer. Further, this has been the focus of
artificial intelligence (AI) research for breast cancer.

On breast cancer diagnosis, it is important to remove
the breast tumor by surgery. However, complete removal
of the breast is being avoided to maintain quality of life
after treatment. One of the factors is the recent advances
in post-genomic research that increased the understanding
of molecular biology of breast cancer, leading to the devel-
opment of new drugs. The current standard of treatment for
breast cancer is a multidisciplinary therapy that includes a
medical approachusing systemic therapy. In this typeof treat-
ment, the AI research that supports personalized treatment
according to the biological characteristics of cancer is called
Radiomics [4–20]. Medical care is performed in the order
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of disease detection, differential diagnosis, and treatment.
Therefore, CAD can be considered an AI system supporting
the first half of medical care, and radiomics is an AI system
supporting the second half of medical care.

Breast cancer is characterized by the possibility of unde-
tected metastasis. Therefore, drug systemic therapy is devel-
oped to be administered before and after surgery. The purpose
of neoadjuvant pharmacotherapy is to (1) reduce the size of
large tumor in patients who wish to preserve their breast, and
(2) determine the sensitivity to drug therapy before surgery
in patients who require adjuvant pharmacotherapy. Patients
with pathological complete response (pCR) on neoadjuvant
pharmacotherapy have a low risk of recurrence and have
a better prognosis than patients without pCR [21, 22]. If
achieving pCR can be predicted from the images, the value
of preoperative image examination can be increased.

In predicting the effect of neoadjuvant pharmacother-
apy, DEC-MRI (dynamic contrast-enhanced magnetic reso-
nance imaging) [4–13], diffusion-weighted imaging [14–16],
contrast-enhanced MRI [16, 17], and PET/CT [18–20] have
been used. In this study, we developed a method for pre-
dicting pCR using fat-suppressed T2-weighted images that
are commonly used in clinical practice. With regard to the
biological characteristics of cancer, pCR patients with lumi-
nal B/HER2 (human epidermal receptor 2)-negative, HER2,
and triple-negative tumors have a better prognosis than non-
pCR patients. However, there was no significant difference
between the prognosis of pCR and non-pCR in patients with
luminal B/HER2-positive and luminal A breast cancers [21].
Since immunohistochemical staining can be used to classify
the breast cancer subtypes, we can select patients who may
have a better prognosis. However, the prognosis cannot be
predicted. Therefore, in this study, we developed a method
to predict pCR in patients with luminal B/HER2-negative,
HER2, and triple-negative breast cancer. In addition, we
applied the analysis of survival time using the prediction
results of pCR and non-pCR to investigate whether there was
a significant difference in the prognosis of the pCR group.
This allows us to integrate the result of biopsy and imaging
examination.

Materials andmethods

Image database

We used a public database ISPY1 (investigation of serial
studies to predict the therapeutic response with imaging
and molecular analysis breast cancer) in TCIA (the can-
cer imaging archive) [23]. The ISPY1 contains MR images
and clinical information of 221 patients with breast cancer.
Fat-suppressed T2-weighted images were selected from 64
patients with luminal B/HER2 negative, HER2, and triple-

Table 1 The immunohistochemistry defined subtypes of breast cancer

Hormone
receptor

HER2

ER PgR

Luminal A + + −
Luminal B (HER2 negative) + −

– +

Triple-negative breast cancer (TNBC) − −
Luminal B (HER2 positive) + + +

−
HER2 type − −

negative tumors because of the significant difference in
prognosis when these patients achieve pCR [21]. In this
study, the immunohistochemically defined subtypes of breast
cancer were determined, as shown in Table 1, using the
information of PgR (progesterone receptor), ER (estrogen
receptor), and HER2. There were 26 cases of pCR (4 cases
of luminal B/HER2-negative, 7 cases of HER2, and 15 cases
of triple-negative) and 37 cases of non-pCR (10 cases of
luminalB/HER2-negative, 10 cases of HER2, and 18 cases
of triple-negative). Information on hormone receptor, HER2,
pCR, and survival time was attached to the database. All MR
images were converted to 512×512 by linear interpolation.
The patients’ ages ranged from 26 to 68 years. The tumor
diameters ranged from 2.1 to 13.7 cm and median of 5.2 cm.
The mean and standard deviation of tumor diameter for pCR
and non-pCR cases were 5.4±3.1 cm and 6.1±2.5 cm,
respectively. The result of t test was p � 0.3, which was
not significantly different. This study was approved by the
ethical review committee.

Tumor segmentation

The image slice with the largest tumor diameter was selected
from the MR images, and the tumor region was manually
segmented. According to the rules of marking, when there
are multiple tumors in the MR image, the largest tumor area
should be selected. We marked the spicules and incorrect
edges as the tumor region to accurately quantify the radiomic
features related to the shape. Radiological technologist certi-
fied inmammography segmented all tumor regions by using a
free software MaZda [24–26]. Radiologists checked the seg-
mented regions, and made corrections if necessary. Figure 1
shows an example of marking the tumor region.

Radiomic features

To normalize the pixel values, we performed a linear density
transformation on all MR images. When the linear density
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Fig. 1 Example of a manually segmented tumor region. a Original
image and b segmented tumor region

transformation was applied, the maximum pixel value was
affected by noise due to high pixel values. The width of the
pixel value became small in the tumor region. To solve this
problem, we calculated the upper 0.01%-pixel value of the
density histogram and set the pixel values above the pixel
value as 1023. The linear density transformation was per-
formed so that theminimum andmaximum pixel values were
0 and 1023, respectively. We assumed that the noise existed
in 0.01% of the entire image and determined the value empir-
ically.

We calculated 371 radiomic features from the tumor
region of the MR image after linear density transforma-
tion. TheMaZda was used to calculate the radiomic features.
The 371 radiomic features included 74 shape, 9 histogram,
272 texture, and 16 resolution. The default values of MaZda
were used as parameters for calculating these 371 radiomic
features. For example, the parameters when calculating the
density co-occurrencematrix of texture featureswere 16 den-
sity gradations, 1–5 in the distance between pixels, and 0°,
45°, 90°, and 135° in the direction.

Selection of radiomic features

There were 371 radiomic features and 64 cases hence, it is
necessary to select useful radiomic features for the prediction
of pCR. In this study, the radiomic features were selected
using the least absolute shrinkage and selection operator
(Lasso) [27], which is determined by the following equation:

β̂ lasso
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where yi is the pCR or non-pCR of the i th patient. x j are
radiomic features. β j are coefficients, and β0 is a constant
term.λ ≥ 0 is a complexity parameter that controls the degree
of reduction. p represents the total number of radiomic fea-

tures. The parameter β j can be obtained by solving the
quadratic programming problem in Eq. (1). In this study,
λ was set such that the number of radiomic features whose
β j was not zero but nine. A tenfold cross validation was
performed to determine the value of λ that minimizes the
average deviation. When the values of λ obtained in the pro-
cess of this calculation were used in order, the value of λwas
adopted so that the number of radiomic features with nonzero
coefficient β j was nine.

Prediction of pCR

The classifier with 9 radiomic features selected by Lasso was
used to distinguish between pCR and non-pCR. As the clas-
sifier, we used linear discriminant analysis (LDA) [28] and a
support vectormachine (SVM) [29]. LDA is amethodoffind-
ing a hyperplanewhen the variances of the pCR and non-pCR
groups are the same in the feature space where the radiomic
features are used as input variables. The problem of LDA is
the discrimination boundary that is pulled in the direction of
outliers which is different with other cases. In addition, when
the pCR and non-pCR groups cannot be linearly separated
in the feature space, high discrimination performance cannot
be obtained. However, if high discrimination performance is
obtained by LDA, it means that the pCR and non-pCR groups
can be distinguished by a simple rule of feature space. There-
fore, radiomic features may be used as an image biomarker
for classifying pCR and non-pCR.

On the other hand, SVM can remove the outliers using
a technique called soft margin and create a discrimination
boundary. Thus, it is not affected by outliers. Moreover, a
highly accurate discrimination is possible evenwithout linear
separation because a complicated discrimination boundary
can bemade by a kernel trick. By comparing the discriminant
scores of LDA and SVM, we can understand how com-
plex pCR and non-pCR groups overlap in the feature space.
The leave-one-out method [30] was used for training and
for testing the classifiers. The discrimination performance
was evaluated by performing receiver operating characteris-
tic (ROC) analysis using the LABROC4 algorithm [31] from
the University of Chicago.

Survival time analysis

By applying the method described in the previous section,
it is possible to distinguish between the pCR and non-pCR
groups. The proposed method is proven useful for the prog-
nostic prediction of neoadjuvant pharmacotherapy if there is
a significant difference in the survival time of patients pre-
dicted to have pCR even if the discriminative ability of the
proposed method is not high. Therefore, we performed a sur-
vival time analysis with the discrimination results between
the pCR and non-pCR groups as input data. At this time,
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we conducted the experiment by collecting the survival
time of the 62 patients from the ISPY1 database. By using
Kaplan–Meier [32], the two survival curveswere obtained by
estimating the cumulative hazard functions of the pCR and
non-pCR groups discriminated by the proposed method. The
log-rank test [32] was performed on the two survival curves
to calculate if there is a statistically significant difference.

Results

Figure 2 shows the relationship between the number of
radiomic features selected by Lasso and the LDA discrimi-
nation results. The number of radiomic features depends on
the value of the Lasso reduction parameter λ. The discrimi-
nation performance of LDA was obtained when the number
of radiomic features was increased from 2 to 10 by changing
the value of λ. The result showed that the discrimination per-
formance was highest when 9 radiomic features were used.
Table 2 shows the nine selected radiomic features. Four shape
features, 4 texture features, and 1 resolution feature were
selected. Figure 3 shows the ROC curves of LDA and SVM
when these 9 radiomic features were used as input data. A
Gaussian kernel was used for the SVM. The area under the
curve (AUC) of LDA and SVM were 0.75 and 0.92, respec-
tively. The discrimination performance of SVM was higher
than LDA. This means that pCR and non-pCR groups are not
distributed in a simple relationship that can be distinguished
by a hyperplane in the 9 radiomic feature space. Table 3
shows the discrimination results using SVM.

The sensitivity was 92.3%, and the specificity was 71.1%
for distinguishing between pCR and non-pCR. Figure 4a
shows the result of the survival time analysis when this dis-
crimination result of SVMwas used as input data. It should be
noted that the input data contain data that were misclassified
by SVM. The survival curve classified into the pCR group

Fig. 2 Relationship between the number of radiomic features and the
classification performance of LDA

Table 2 Nine radiomic features selected by Lasso

Radiomic feature Category Description

#1 GeoAox Geometry Oriental angle

#2 GeoW9 Geometry Area of the
circumscribing
rectangle/number of
the object pixels

#3 GeoW13 Geometry Maximal
diameter/number of
the object pixels

#4 GeoYo Geometry Gravity center to
inscribed circle
center distance

#5 S(1,1) Contrast Texture Contrast of
co-occurrence matrix
(S(1,1) is the
between-pixels
distance)

#6 Vertl_GLevNonU Texture Vertical grey level
nonuniformity of run
length matrix

#7 GrKurtosis Texture Absolute gradient
kurtosis

#8 Teta1 Texture Parameter θ1 in the
autoregressive model

#9 WavEnHH_s-1 Resolution Wavelet energy
(frequency band: HH,
scale: 1rd)

Fig. 3 ROC curves for distinguishing between pCR and non-pCR

was at a higher position than the non-pCR group. However,
the log-rank test was p � 0.2 and there was no significant
difference found. Figure 4b shows the survival curves when
all of them were correctly classified. The survival curve of
the pCR group was higher than the non-pCR group, and the
log-rank test was p � 0.003. Therefore, if the discriminative
performance of the proposedmethod can be further improved
by using deep learning, it can be claimed that the prognosis
of patients predicted to have pCR is good.
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Fig. 4 Kaplan–Meier estimate of survivor functions. aWhen we use the prediction results of SVM. bWhen we use the truth data, which accurately
classify all cases

Table 3 Classification performance of SVM

Computer output

pCR Non-pCR

Truth

pCR 92.3% (24/26) 7.7% (2/26)

Non-pCR 28.9% (11/38) 71.1% (27/38)

Discussion

When the proposed method is used in the clinical prac-
tice, radiologists can use the radiomic feature as an imaging
biomarker in their image interpretation if there is a sim-
ple relationship between radiomic features and prediction
of pCR. For example, if lesion having complicated shape or
large size can be easily assumed as pCR, shape or size can be
used as imaging biomarker. Hence, it is important to find out
whether there is such a simple relationship or not. In Fig. 5,
the horizontal axis shows the output values of LDA and the
vertical axis shows the output values of SVM.When the LDA
on the horizontal axis is used, it is difficult to distinguish the
pCR group from the non-pCR group; however, when SVM
on the vertical axis is used, the degree of separation between
the pCR and non-pCR groups is improved. LDA is a method
for determining a hyperplane in a multidimensional space,
and SVM is a method of forming a more complex decision
surface than LDA. Therefore, this result indicates that the
relationship between radiomics features measured from fat-
suppressed T2-weighted images and the pCR or non-pCR

Fig. 5 Relations of output values between LDA and SVM

group is quite complicated. Thus, radiologists cannot use
radiomic features as imaging biomarkers.

We investigated related researches to investigate the exis-
tence of imaging biomarker for prognostic prediction or
molecular diagnosis when we used other images. Cain et al.
conducted an experiment on triple-negative and HER2 pos-
itive breast cancer [8]. They reported that the AUC value
of logistic regression using four radiomic features measured
from DCE-MRI was 0.707. Liu et al. selected four radiomic
features from the T2-weighted image, diffusion-weighted
image, and contrast-enhanced T1-weighted image by using
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the Boruta algorithm [16]. By using SVM, the AUC value for
discriminating between pCR and non-pCR groups was 0.79.
These results also indicate that it is difficult to find imag-
ing biomarkers associated with the pCR group. On the other
hand, from a patient’s perspective, it is sufficient to select the
optimal treatment for cancer, and radiomic features used in
AI may act as a black box. We recommend further studies to
investigate its use in the clinical practice.

Similar studies have been conducted for the discrimina-
tion of benign and malignant CAD [1, 2]. CAD is a study for
discriminating the current state xt from the current image,
but this study predicts the future state xt+1 from the cur-
rent image. CAD for discriminating benign and malignant
conditions has a drawback; if a malignant cancer is misclas-
sified as benign, the patient may lose the opportunity for
treatment. For this reason, various functions such as pre-
senting the quantified value of image features and similar
cases of benign or malignant have been developed [33] in
order to improve the radiologist’s diagnostic accuracy with
CAD. Thus, considerable time was required for its practical
application. However, the present study included malignant
cancers, and surgery is performed even if our systemmistak-
enly predicts that neoadjuvant pharmacotherapy will not be
effective. Therefore, even if our system makes an erroneous
decision, it does not strongly result in a bad decision, and
may not be a major problem in actual operation. Therefore,
radiomics AI system is considered easier to put into prac-
tical use than CAD for the differential diagnosis. However,
it should be noted that there is a possibility of unnecessary
pharmacotherapy.

The limitation of present study is the number of cases is
small because of using the selected subtypes of breast can-
cer. It is necessary to confirm the usefulness of the proposed
method using a large database.

Conclusion

We developed a method to predict patients with pCR
by neoadjuvant pharmacotherapy using noninvasive MR
images. The survival curve of patients classified as having
pCR by the proposedmethodwas higher than those classified
as non-pCR. By improving the discrimination performance
of our method, the prognosis of patients predicted to have
pCR was good. The proposed system can enhance the value
of preoperative image examination.
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