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Abstract

Introduction: Computer-aided diagnostic systems have been developed for the

detection and differential diagnosis of coronavirus disease 2019 (COVID-19)

pneumonia using imaging studies to characterise a patient’s current condition.

In this radiomic study, we propose a system for predicting COVID-19 patients

in danger of death using portable chest X-ray images. Methods: In this

retrospective study, we selected 100 patients, including ten that died and 90

that recovered from the COVID-19-AR database of the Cancer Imaging

Archive. Since it can be difficult to analyse portable chest X-ray images of

patients with COVID-19 because bone components overlap with the abnormal

patterns of this disease, we employed a bone-suppression technique during pre-

processing. A total of 620 radiomic features were measured in the left and right

lung regions, and four radiomic features were selected using the least absolute

shrinkage and selection operator technique. We distinguished death from

recovery cases using a linear discriminant analysis (LDA) and a support vector

machine (SVM). The leave-one-out method was used to train and test the

classifiers, and the area under the receiver-operating characteristic curve (AUC)

was used to evaluate discriminative performance. Results: The AUCs for LDA

and SVM were 0.756 and 0.959, respectively. The discriminative performance

was improved when the bone-suppression technique was employed. When the

SVM was used, the sensitivity for predicting disease severity was 90.9% (9/10),

and the specificity was 95.6% (86/90). Conclusions: We believe that the

radiomic features of portable chest X-ray images can predict COVID-19

patients in danger of death.

Introduction

The number of people who have been infected with

coronavirus disease (COVID-19) now exceeds

277 million worldwide, with approximately 5.3 million

deaths. Early detection and prevention of severe disease

are both important for COVID-19 infection control,

and artificial intelligence (AI) has been used to achieve

this goal.

Computer-aided diagnosis (CAD) and radiomics have

been used to develop AI systems in radiology. CAD

systems support the detection and differential diagnoses

of various diseases, including breast, lung and colon

cancers.1–3 These systems estimate the likelihood of a

disease state from current images. In comparison,

radiomics support medical care after a disease is detected4

by predicting prognosis or therapeutic effects. Therefore,

radiomics differ from CAD because it predicts a future

state from a current image. In general, medical care is

performed in the following order: disease detection,

differential diagnosis and treatment. Therefore, CAD can

be considered an AI strategy that supports the first half of
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medical care, while radiomics support the second half of

medical care, as shown in Figure 1.

Research related to COVID-19 involves both CAD and

radiomic studies. CAD research includes studies related to

the detection of COVID-19 pneumonia,5 the differentiation

of COVID-19 pneumonia from other types of

pneumonia,6,7 the concurrent detection and differential

diagnosis of COVID-19 pneumonia8–13 and the differential

diagnosis of severe respiratory failure.14 On the other hand,

radiomic research includes predictive studies related to the

severity and prognosis of COVID-19,15–21 the need for

oxygenation support and intubation22 and the criteria for

discharge.23,24

In previous radiomic studies of COVID-19, computed

tomography (CT) images were used because of the ease of

analysis, while chest radiographs have never been used.

However, preventing infection during entering and exiting

the CT room imposes a heavy burden on the medical staff.

Therefore, in this study, we developed a method for

predicting COVID-19 patients in danger of death using

portable chest radiographs that can be obtained in a

hospital room. However, since chest radiography is a two-

dimensional projection of a three-dimensional lung

structure, images can be difficult to analyse because of

overlapping bone components and lesions. In this study, we

analysed COVID-19 lesion patterns after image pre-

processing to attenuate bone components. We then

analysed the usefulness of this approach by comparing the

predictive performance of our system with and without this

bone-suppression technique.

Materials and Methods

Image and clinical data

For this study, we used the COVID-19-AR database of the

Cancer Imaging Archive,25 which contains clinical and

imaging data from 105 patients with severe acute

respiratory syndrome coronavirus 2 infection. We selected

100 portable chest radiographs taken when patients were

first hospitalised and used them for the analyses in this

study. Patients with cardiac pacemakers were excluded. Ten

patients who died after treatment and 90 patients who

recovered were selected for this study. Approval from the

ethics review committee of Kumamoto University was

obtained for the implementation of this study.

Bone-suppression technique

Reticular and ground-glass opacities have been detected on

CT images of COVID-19 patients.26,27 However, using

portable chest radiographs to detect these shadows can be

difficult because of bone overlap with bone. Therefore, a

bone-suppression technique,28 developed by Konica

Minolta, was employed in this study. Figure 2B shows an

example of an output image with bone suppression. This

process was performed using the following three steps: first,

the lung area was classified into four regions with different

boundary properties, including the lung apex, external

thoracic region, diaphragm and mediastinum. Each lung

region was then extracted using the optimal edges for each

boundary. Next, edges and ridges related to clavicles and

ribs were detected with the use of the first and second

derivatives of specific direction on the image, and then,

boundaries of ribs and clavicles were extracted with the use

of the bone model extracted from chest image database,

which was consisted of bone edge angle and location. Once

bone edges were identified, signal distribution from

clavicles and ribs were estimated and distinguished from

background signal to suppress the signal from bones.

During the signal estimation process, signal distribution

from clavicles and ribs was estimated in a cross-sectional

direction with the use of Gaussian smoothing and

morphometric technologies, and suppressed from the

Figure 1. Difference between computer-aided diagnosis (CAD) and radiomic research.
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image. Finally, clavicles and posterior and anterior ribs were

suppressed.28

Determination of radiomic features

In this study, the left and right lung regions, excluding

the diaphragm and heart, were manually segmented, and

radiomic features were determined from each segmented

lung region. Figure 2C shows an example of a segmented

lung region. The diaphragm and heart were excluded

because COVID-19 lesions are usually detected in the

peripheral lung regions.26,27 In addition, the high pixel

values in the normal tissues of the diaphragm and heart

can overlap with the radiomic features of COVID-19

lesions in the lung region.

In this study, 310 radiomic features were calculated

from each of the segmented regions of the left and right

lungs, for a total of 620 radiomic features. The free

software MaZda29–31 was used to calculate these features.

The 310 radiomic features in each lung included a size

feature, nine histogram features, 272 texture features and

28 resolution features. The default values of MaZda were

adopted as parameters for calculating these radiomic

features. For example, the parameters used for calculating

the density co-occurrence matrix of the texture features

were 16 density gradations, a distance between 1 and 5

pixels, and 0°, 45°, 90° and 135° in the direction.

Selection of radiomic features

The number of radiomic features was 610, which was larger

than the 100 cases. Hence, it was necessary to identify

radiomic features that were useful for the prediction of

COVID-19 patients in danger of death. In this study,

radiomic features were selected using the least absolute

shrinkage and selection operator (Lasso) technique,32 which

was defined by the following equation:

β̂
lasso ¼ argmin

β

1

2
∑
N

i¼1

yi�β0�∑
p

j¼1

xijβj

! 2

þ λ∑
p

j¼1

βj

��� ���
( )

:

(1)

Here, yi was the prognostic information, i.e. the death or

recovery of the i-th patient. xj was the radiomic feature;

βj was the coefficient; and β0 was the constant term.

λ ≥ 0 was a complexity parameter that controlled the

degree of reduction, and p represented the total number

of radiomic features. The parameter βj was obtained by

solving the quadratic programming problem in

equation (1). In this study, λ was set so that the number

of radiomic features with the non-zero coefficient βj was
4. Three-fold cross-validation was then performed to

determine the value of λ that minimised the average

deviation. When the values of λ obtained in the process of

this calculation were used in order, the value of λ was

adopted so that the number of radiomic features with

non-zero coefficients was 4.

Visualisation of multidimensional scaling

Although Lasso can reduce the dimensions of radiomic

features, the resultant data are still multidimensional.

Therefore, it can be difficult to understand the relationship

between the multidimensional data and the patients in

danger of death. If, however, the data can be reduced to two

dimensions, this relationship can be visualised as a scatter

plot. Therefore, we employed multidimensional scaling

(MDS)32 to reduce radiomic features to two dimensions.

MDS was used to construct a new axis via the following

procedure: first, the distance matrix dij consisting of the

Euclidean distance of input i and input j was calculated, and

then, the transformation matrix zij was calculated using the

following equation:

Figure 2. Examples of images with bone suppression and manually segmented lung regions.
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The transformation matrix moved the origin to the center

of gravity of the n input data. Finally, the new coordinate

points were determined as coordinate values on the axis

given by the eigenvector of the transformation matrix zij.

Because MDS is a linear transformation that maintains the

Euclidean distance between data, it can be interpreted to

reproduce the relative positional relationship of

multidimensional data in a low-dimensional space.

Prediction of patients in danger of death

We employed classifiers from four radiomic features selected

by Lasso to predict death and recovery cases. Linear

discriminant analysis (LDA)33,34 and an SVM35 were used in

this study. LDA is a method for determining the hyperplane

that best discriminates between death and recovery cases

when the variance in each group is assumed to be the same

in the feature space. Unfortunately, a high discriminative

performance cannot be obtained with LDA when the input

data contains ‘outliers’. However, when LDA provides high

discriminative performance, it signifies that there is a simple

relationship between radiomic features and the mortality risk

of COVID-19. Therefore, if radiologists can interpret

imaging findings that match the radiomic features, it may be

possible to predict the mortality risk of COVID-19.

On the other hand, an SVM can generate a decision

boundary when outliers are removed by a technique called

soft margin. In addition, kernel tricks can generate complex

decision boundaries, which enables highly accurate

discrimination, even for problems that cannot be linearly

separated. By comparing the discriminative performance of

LDA with SVM, it is possible to understand the complexity

of the overlap in the multidimensional radiomic feature

space for the two groups (that is, death and recovery

groups). In this experiment, a Gaussian kernel with σ = 3

and a soft margin C = 0.01 was employed. These

parameters were empirically determined. For training and

testing these classifiers, the leave-one-out method33,34 was

employed. To evaluate the discriminative performance, the

area under the curve (AUC) of the receiver-operating

characteristic (ROC) analysis was used. The LABROC436

algorithm developed by the University of Chicago was used

for the ROC analysis.

Experimental Results

Figure 3 shows the relationship between the number of

radiomic features selected by Lasso and the AUCs. This

result was obtained by comparing the discriminative

performance of the LDA with or without the bone-

suppression technique. In the absence of bone suppression,

six radiomic features were not selected by Lasso. With bone

suppression, the highest AUC was 0.762 when five radiomic

features were used. Without bone suppression, the highest

AUC value was 0.698 when three radiomic features were

used. Since the highest AUC on average was obtained when

four radiomic features were used, processing was performed

using four radiomic features. Table 1 shows the four

radiomic features selected by Lasso with and without bone

suppression. It can be seen that texture features obtained by

the density co-occurrence matrix were mainly selected. S

(5,0) shows that the co-occurrence matrix was calculated

with a distance of 5 pixels on the X-axis and 0 pixels on the

Y-axis. Haar function is employed as a wavelet, and LH

represents a low-pass filter in the X-axis direction and a

high-pass filter in the Y-axis direction. For detailed

definitions of these radiomic features, refer to.29

Figure 4 shows the MDS results using the four radiomic

features with and without bone suppression. Since the

radiomic features were normalised, and the number of

recovery cases was larger than the number of death cases,

the recovery cases were distributed around the origin. In

addition, death cases were distributed away from the

origin and did not tend to be distributed in a specific

direction. Without bone suppression, there was a tendency

for the overlap between the death and recovery cases to be

large.

Figure 5 shows the ROC curves with and without bone

suppression for predicting death and recovery cases.

Because the two ROC curves did not intersect, the

discriminative performance could be directly compared

using AUC values. The discriminative performance was

higher when bone suppression was used, with AUCs of

0.756 � 0.149 and 0.680 � 0.171. Figure 6 shows the

results obtained using the SVM. These parameters were

empirically determined. Similar to the LDA results, the

discriminative performance of the SVM with bone

suppression was higher than without bone suppression,

with AUCs of 0.959 � 0.037 and 0.917 � 0.060. As shown

in Figure 3, death cases were not distributed in a specific

direction from the origin; therefore, it was difficult to

distinguish them on a hyperplane. Because SVM generates

a complex discriminant boundary, SVM achieved better

discriminative performance than LDA. When an SVM was

used, the sensitivity for predicting death was 90.0% (9/10),

and the specificity was 95.6% (86/90).

Discussion

Using LDA and SVM evaluations, the discriminative

performance for identifying death versus recovery cases was
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improved with bone suppression. The analysis of chest

radiographs can be difficult because of the overlap between

bone components and the abnormal patterns of COVID-

19. However, it is thought that these abnormal patterns can

be analysed more easily when bone-suppression techniques

are applied. Therefore, bone suppression is considered

useful as a pre-processing method because it is an image

processing and does not require the use of energy

subtraction.

In addition, if LDA provides high discriminative

performance, it means that there is a simple relationship

between radiomic features and the COVID-19 patients in

danger of death. Therefore, radiologists can use the

imaging findings that match the radiomic features for

predicting the mortality risk of COVID-19. However, the

discriminative performance of LDA was not high, even

when bone suppression was used. Therefore, the

relationship between imaging findings and mortality risk is

not simple, and it may be difficult for radiologists to use

radiomics features as imaging biomarkers for this

prediction. It should be noted that LDA was employed to

investigate whether there is a simple relation between

radiomic features and mortality risk, and LDA was not

used for predicting the mortality risk of COVID-19 in this

study. Predictive models have a trade-off between

predictive accuracy and interpretability. Conventional

statistical models have high interpretability due to their

simple design. A model with low interpretability is called

black box. However, it is ideal to have both high predictive

accuracy and high interpretability.

When SVM was used, mortality risk could be predicted

with high accuracy, suggesting that AI can identify

complex relationships that are difficult for humans to

interpret from imaging data easily. By showing SVM

output to a doctor, it may be possible to achieve

augmented intelligence that expands a doctor’s knowledge

and helps him or her make an accurate diagnosis. This new

concept is similar to that of traditional CAD. In CAD, for

the detection of the lesion, the radiologist reconfirms the

image based on the output of the computer and

determines whether the lesion exists. By evaluating the

computer results, the radiologist can easily notice his or

her overlook of the lesion when the computer detected the

lesion accurately, and the radiologist can easily recognise

the false detection when the computer detected normal

tissue as a lesion. Therefore, the synergistic effect between

the radiologist and the computer improves the accuracy of

the diagnosis.1 However, since radiomics estimates the

future condition from a current image, it is difficult for

radiologists to adapt to this technology. Hence, it is

necessary to clarify what type of information should be

provided to the doctor to improve the predictive accuracy.

Since it is much more difficult to develop an explainable AI

system than a CAD system for the detection of diseases,

this should be pursued in future research.

In current studies on COVID-19, there is no distinction

between approaches for detection and prognostic prediction.

Deep learning is also used for prognostic prediction.16,18,19

However, in the AI system for prognostic prediction, it is

important to develop a method that explains the computer

Figure 3. Relationship between the number of selected radiomic features and the area under the receiver-operating characteristic curve (AUC)

for the prediction of mortality risk when a linear discriminant analysis is used.
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results for the doctor. From this point of view, un-box deep

learning approaches have been developed. However, an

observation study is needed to verify what information helps

doctors make clinical decisions and improve predictive

performance.

The main limitation of this study was the small number

of death cases. Since the radiomic features selected by

Lasso depended on the cases used in this study, it will be

necessary to increase the number of cases to improve the

reliability of this system in the future.

Table 1. Radiomic features selected by the least absolute shrinkage and selection operator technique with and without bone suppression. For

detailed definitions of these radiomic features, refer to http://www.eletel.p.lodz.pl/programy/mazda/.29

Image # Feature Lung Category Description

Original image #1 S(5,0)DifVarnc Left Texture feature

Co-occurrence matrix

Difference variance

S(5,0) is the between-pixel distance

#2 S(0,1)SumVarnc Right Texture feature

Co-occurrence matrix

Sum Variance

S(0,1) is the between-pixel distance

#3 S(0,3)SumEntrp Right Texture feature

Co-occurrence matrix

Sum Entropy

S(0,3) is the between-pixel distance

#4 S(0,4)SumEntrp Right Texture feature

Co-occurrence matrix

Sum Entropy

S(0,4) is the between-pixel distance

Bone Suppression #1 S(5,0)DifVarnc Left Texture

Co-occurrence matrix

Difference variance

S(5,0) is the between-pixel distance

#2 WavEnLH_s-7 Left Resolution

Haar Wavelet

Wavelet energy

(frequency band: LH, 7rd scale)

#3 S(0,1)SumOfSqs Right Texture

Co-occurrence matrix

Sum of squares

S(0,1) is the between-pixel distance

#4 S(0,1)SumVarnc Right Texture

Co-occurrence matrix

Sum Variance

S(0,1) is the between-pixel distance

Figure 4. Multidimensional scaling (MDS) outputs using four radiomic features with and without bone suppression.
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Conclusions

In this study, we demonstrated it is possible to predict

COVID-19 patients in danger of death using radiomic

features obtained from portable chest radiographs. We also

confirmed that a bone-suppression technique was effective.

In the future, we will further explore the utility of using

portable chest radiographs for this purpose by increasing

the number of cases and improving the reliability of the

system.
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